
Description:
Wearable Robots, Exoskeletons leverage better technology, they support high quality, lightweight materials and long life batteries. Wearable robots, exoskeletons are used for permitting paraplegic wheel chair patients walk. They are used to assist with weight lifting for workers: Designs with multiple useful features are available. The study has 421 pages and 161 tables and figures.

Wearable robots, exoskeletons units are evolving additional functionality rapidly. Wearable robots functionality is used to assist to personal mobility via exoskeleton robots. They promote upright walking and relearning of lost functions. Exoskeletons are helping older people move after a stroke. Exoskeletons deliver higher quality rehabilitation, provide the base for a growth strategy for clinical facilities.

Exoskeletons support occupational heavy lifting. Exoskeletons are poised to play a significant role in warehouse management, ship building, and manufacturing. Usefulness in occupational markets is being established. Emerging markets promise to have dramatic and rapid growth.

Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable paraplegics to walk again. Devices have the potential to be adapted further for expanded use in healthcare and industry. Elderly people benefit from powered human augmentation technology. Robots assist wearers with walking and lifting activities, improving the health and quality of life for aging populations.

Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are useful in medical markets. They are generally intended for logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.

Robotics has tremendous ability to support work tasks and reduce disability. Disability treatment with sophisticated exoskeletons is anticipated to providing better outcomes for patients with paralysis due to traumatic injury. With the use of exoskeletons, patient recovery of function is subtle or non existent, but getting patients able to walk and move around is of substantial benefit. People using exoskeleton robots are able to make continued progress in regaining functionality even years after an injury.

Rehabilitation robotic technologies developed in the areas of stroke rehabilitation and SCI represent therapeutic interventions with utility at varying points of the continuum of care. Exoskeletons are a related technology, but provide dramatic support for walking for people who simply cannot walk.

Parker Hannifin Indego intends to include functional electrical stimulation. It accelerates recovery of therapy in every dimension. Implementation in these kinds of devices is a compelling use of the electrical stimulation technology.

It is a question of cost. The insurance will only pay for a small amount of exoskeleton rehabilitation. More marketing will have a tremendous effect in convincing people that they can achieve improvements even after years of effort.

Rehabilitation robotics includes development of devices for assisting performance of sensorimotor functions. Devices help arm, hand, leg rehabilitation by supporting repetitive motion that builds neurological pathways to support use of the muscles. Development of different schemes for assisting therapeutic training is innovative. Assessment with sensorimotor performance helps patients move parts of the body that have been damaged.

Exoskeletons are used mainly as therapy aids in this manner, highly targeted, highly specific as to how much movement is supported at any one time. Learning how to walk for a wheelchair bound patient or relearning of lost functions in a patient depends on stimulation of desire to conquer the disability. Effective tools help incent desire of the patient to get better.
Initially when a market is just developing and it is going through the early adopter phase, penetration analysis is an appropriate balance to growth %. The penetration analysis for wearable robots is still too small to be useful but it is useful to bear in mind that there is tremendous upside to this market.

Wearable Robots, Exoskeletons at $16.5 million in 2014 are anticipated to reach $2.1 billion by 2021. New technology from a range of vendors provide multiple designs actually work. This bodes well for market development.

Contents:
- Wearable Robot Exoskeleton Executive Summary
- Wearable Robot Exoskeleton Market Driving Forces
 - Exoskeletons as Rehabilitation Assistive Devices
 - Exoskeleton Rehabilitation Robots Decrease the Cost of Recovery
 - Exoskeleton Market Shares
- Wearable Robot, Exoskeleton Market Forecasts

1. Wearable Robot Exoskeleton Market Description And Market Dynamics
 1.1 Wearable Robot Exoskeleton Market Definition
 1.2 Market Growth Drivers For Exoskeletons
 1.3 Human Augmentation
 1.3.1 Exoskeleton Technology
 1.4 Rehabilitation
 1.4.1 Ekso Pulse System
 1.4.2 Electrical Stimulation
 1.4.3 Robotic Therapy Devices
 1.4.4 Partial Body Weight-Supported Treadmill
 1.4.5 Virtual Reality (including Wii-hab)
 1.4.6 Brain Stimulation
 1.4.7 Acupuncture
 1.4.8 Mental Practice
 1.4.9 Mirror Therapy
 1.4.10 Evidence-Based Treatment Protocols
 1.5 Traumatic Brain Injury Program
 1.5.1 Concussion Program
 1.6 Exoskeleton Research in the Market For Use In Gait Training
 1.6.1 Running with Robots
 1.6.2 Use Of Video Game Technology In PT
 1.6.3 Telemedicine Growing Trend In The Physical Therapy Space
 1.7 Robotic Rehabilitation Devices Based On Automated Process
 1.7.1 Automated Process for Rehabilitation Robots
 1.7.2 Why Rehabilitation is Essential
 1.7.3 Rehabilitation Involves Relearning of Lost Functions
 1.8 Robotic Exoskeletons Empower Patient Rehabilitation Achievements
 1.8.1 Seizing the Robotics Opportunity
 1.8.2 Modular Self-Reconfiguring Robotic Systems
 1.9 Home Medical Exoskeletons
 1.9.1 Telemedicine and Domestic Robots
 1.9.2 Rehabilitation Robots Provide Intensive Training For Patients And Physical Relief For Therapists
 1.10 Safety Standards For Exoskeletons In Industry

2. Exoskeleton Market Shares And Market Forecasts
 2.1 Exoskeleton Market Driving Forces
 2.1.1 Exoskeletons as Rehabilitation Assistive Devices
 2.1.2 Exoskeleton Rehabilitation Robots Decrease the Cost of Recovery
 2.2 Exoskeleton Market Shares
 2.2.1 Medical Exoskeleton Rehabilitation Robot Market Shares, Units
 2.2.1 Ekso Exoskeleton Market Share Unit Analysis
 2.2.2 Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
 2.2.3 ReWalk™ Exoskeleton Suit Home Use
 2.2.4 AlterG Bionic Leg Customer Base
 2.2.5 Hocoma Robotic Rehabilitation
 2.2.6 Homoca Helping Patients To Grasp The Initiative And Reach Towards Recovery
2.2.7 Able-Bodied Exoskeletons

2.2.8 Parker Hannifin

2.2.9 UK Armed Police Super-Light Graphene Vests From US Army

2.3 Wearable Robot, Exoskeleton Market Forecasts

2.3.1 Medical Exoskeleton Robot Market Segments

2.3.2 Medical Wearable Robot Exoskeleton, Paraplegic, Multiple Sclerosis, Stroke, And Cerebral Palsy Market Segments

2.3.3 Medical Market for Wearable Robotic Exoskeleton Devices

2.3.4 Spinal Cord Injuries

2.4 Industrial Wearable Robot Exoskeleton Forecasts

2.4.1 Industrial Wearable Robots, Exoskeleton Robot Market Segments

2.4.2 Save Lives And Prevent Injury

2.4.3 Exoskeletons Change The Face Of Shipbuilding

2.4.4 Gait Training

2.4.5 Sports Training

2.4.6 Exoskeletons

2.4.7 End-effectors

2.4.8 Exoskeleton-Based Rehabilitation

2.4.9 Mobility Training Level Of Distribution

2.5 Disease Incidence and Prevalence Analysis

2.5.1 Robotic Therapeutic Stroke Rehabilitation

2.5.2 Aging Of The Population

2.5.3 Disease Rehabilitation

2.5.1 Rehabilitation of Hip Injuries

2.6 Exoskeleton Prices

2.6.1 Ekso Bionics

2.7 Exoskeleton Robots Regional Analysis

2.7.1 US

2.7.2 Europe

2.7.3 Japan

2.7.4 Ekso Bionics Regional Presence

2.7.5 China

2.7.6 Chinese Academy of Sciences Mind-Control Exoskeleton Intelligent Cars

2.7.7 World Cup Mind Controlled Exoskeletons

2.7.8 Korea

3. Wearable Robot Exoskeleton Products

3.1 Ekso

3.1.1 Ekso Exoskeletons and Body Armor for U.S. Special Operations Command (SOCOM)

3.1.2 Ekso TAOS Suit

3.1.3 Ekso Bionics Make Talos Exoskeletons for Socom US Special Operations Command

3.1.4 Ekso SOCOM Collaborative Design Of The Project

3.1.5 Ekso Quiet Power Sources

3.1.6 Ekso Bionic Suits

3.1.7 Ekso Muscle Memory

3.1.8 Ekso Bionics

3.1.9 Esko Technology

3.1.10 Ekso Gait Training Exoskeleton Uses

3.1.11 Ekso Bionics Rehabilitation

3.1.12 Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again

3.1.13 Ekso Go To Market Strategy

3.1.14 Ekso Exoskeleton To Achieve Rehabilitation In The Home

3.2 ReWalk

3.2.1 ReWalk™ Personal 6.0

3.2.2 ReWalk™ Exoskeleton Suit Home Use

3.2.3 ReWalk™ Personal System

3.2.4 ReWalk™ Rehabilitation

3.2.5 ReWalk-Q

3.3 Sarcos

3.3.1 Sarcos Guardian XO

3.3.2 Sarcos Robot-as-a-Service (RaaS) Model

3.3.3 Sarcos Raytheon XOS 2: Second Generation Exoskeleton

3.3.4 Sarcos LC Acquires Raytheon Sarcos Unit of Raytheon
3.4 Rex Bionics Rex
3.4.1 Rex Bionics Rex P
3.5 Cyberdyne
3.5.1 Cyberdyne HAL
3.5.2 Applications of Cyberdyne HAL
3.6 Parker Hannifin
3.6.1 Parker Hannifin Indego
3.6.2 Parker Hannifin Indego Applications
3.6.3 Parker Hannifin Indego
3.7 Berkeley Robotics Laboratory Exoskeletons
3.7.1 Berkeley Robotics and Human Engineering Laboratory ExoHiker
3.7.2 Berkeley Robotics and Human Engineering Laboratory ExoClimber
3.7.3 Berkeley Lower Extremity Exoskeleton (BLEEX)
3.7.4 Berkeley Robotics and Human Engineering Laboratory Exoskeleton
3.8 Hocoma
3.8.1 Hocoma ArmeoBoom
3.8.2 Hocoma Arm Weight Support
3.8.3 Hocoma Scientific Arm Weight Support Results
3.8.4 Hocoma ArmeoSpring Pediatric
3.8.5 Hocoma Early Rehabilitation Therapy
3.8.6 Hocoma LokoMat
3.8.7 Hocoma ArmeoSpring Based On An Ergonomic Arm Exoskeleton
3.8.8 Hocoma Armeo®Spring Clinical Success
3.8.9 Hocoma Armeo Functional Therapy Of The Upper Extremities
3.8.10 Hocoma Armeo®Spring - Functional Arm and Hand Therapy
3.9 AlterG: PK100 PowerKnee
3.9.1 AlterG Bionic Leg
3.9.2 AlterG / Tibion Bionic Leg
3.9.3 AlterG Bionic Leg Customer Base
3.9.4 AlterG M300
3.9.5 AlterG M300 Robotic Rehabilitation Treadmill
3.10 Catholic University of America Arm Therapy Robot ARMin III
3.10.1 Catholic University of America Armin III Project Description
3.10.2 Catholic University of America HandSOME Hand Spring Operated Movement Enhancer
3.11 U.S. Special Operations Command SOCOM Wearable Exoskeleton
3.11.1 DARPA Funded Exoskeleton
3.11.2 DARPA Secure, Smartphone Device
3.11.3 Trek Aerospace Springtail/XFV Exoskeleton Flying Vehicle
3.12 Revision Military Kinetic Operations Suit
3.13 HEXORR: Hand EXOskeleton Rehabilitation Robot
3.14 Mira Lopes Gait Rehabilitation Device
3.14.1 Prototype of University of Twente LOPES with 8 Actuated Degrees of Freedom
3.15 China North Industries Group Corporation (NORINCO)
3.15.1 Chinese Exoskeletons for Combat
3.16 Russian Army: Combat Exoskeletons By 2020
3.17 UK Exoskeleton
3.17.1 UK Exoskeleton Law Enforcement
3.17.2 UK Armed Police Super-Light Graphene Vests
3.17.3 Brain-Machine Interface (BMI) Based Robotic Exoskeleton
3.18 University of Texas in Austin: Robotic Upper-Body Rehab Exoskeleton
3.19 Daewoo Begins Testing Robotic Exoskeletons for Shipyard Workers in South Korea
3.19.1 Daewoo Robotic Suit Gives Shipyard Workers Super Strength
3.19.2 Daewoo Shipbuilding & Marine Engineering
3.19.3 Daewoo Shipbuilding & Marine Engineering (DSME) Wearable Robot Tank Insulation Boxes of LNG Carriers
3.20 Lockheed HULC Exoskeleton
3.20.1 Lockheed Martin FORTIS Exoskeleton

4. Exoskeleton Technology
4.1 Industrial Robot Exoskeleton Standards
4.2 Exoskeleton Standards Use Environment
4.2.1 Sarcos Guardian XOS Industrial Applications
4.2.2 UK Armed Police Super-Light Graphene Vests From US Army
4.2.3 Daewoo Wearable Robot Is Made Of Carbon, Aluminum Alloy And Steel
4.2.4 Cyberdyne HAL for Labor Support and HAL for Care Support Meet ISO 13482 Standard
4.3 Exoskeleton Medical Technology
4.4 Robotic Actuator Energy
4.4.1 Elastic Actuators
4.4.2 General Atomics Hybrid-Electric Power Unit
4.5 Robotic Risk Mitigation
4.6 Exoskeleton Multi-Factor Solutions
4.6.1 Biometallic Materials Titanium (Ti) and its Alloys
4.7 Cognitive Science
4.8 Artificial Muscle
4.9 Regulations

5. Exoskeleton Company Profiles
5.1 AlterG
5.1.1 AlterG M300 Customers
5.1.2 AlterG M300
5.1.3 AlterG™ Acquires Tibion Bionic Leg
5.2 China North Industries Group Corporation (NORINCO)
5.2.1 China North Industries Corporation (NORINCO) Revenue
5.3 Cyberdyne
5.3.1 Cyberdyne Wants to Offer Robot Suit HAL in the U.S.
5.3.2 Robot Exoskeletons At Japan's Airports
5.3.3 To Offset Aging Workforce, Japan Turns to Robot-Worked Airports
5.4 Ekso Bionics
5.4.1 Ekso Able-Bodied Exoskeletons
5.4.2 Ekso Bionics Holdings
5.4.3 Ekso Fourth Quarter And Full Year 2014 Financial Results
5.4.4 Ekso Bionics Seeks To Lead The Technological Revolutions
5.4.5 Ekso Bionics HULC Technology Licensed to the Lockheed Martin Corporation
5.4.6 Ekso Bionics Regional Presence
5.4.7 Ekso Bionics Customers
5.5 Hocoma
5.5.1 Hocoma Robotic Exoskeleton For Integrated Arm And Hand Rehabilitation After Stroke
5.5.2 Hocoma Robotic Rehabilitation
5.5.3 Hocoma Revenue
5.6 Lockheed Martin
5.6.1 Lockheed Martin First Quarter 2015 Results
5.6.2 Lockheed Martin Symphony Improvised Explosive Device Jammer Systems
5.6.3 Lockheed Martin Aeronautics Revenue
5.6.4 Lockheed Martin Electronic Systems
5.6.5 Lockheed Martin
5.7 Parker Hannifin
5.7.1 Parker Revenue for Fiscal 2015 Second Quarter Sales
5.7.2 Parker Hannifin Segment Results Fiscal 2015 Second Quarter
5.7.3 Parker and Freedom Innovations' Partnership
5.7.4 Parker Hannifin Indego License
5.8 Revision Military
5.9 ReWalk Robotics
5.9.1 ReWalk Revenue
5.9.2 ReWalk Year-End 2014 Financial Highlights
5.9.3 ReWalk First Mover Advantage
5.9.4 ReWalk Strategic Alliance with Yaskawa Electric Corporation
5.9.5 ReWalk Scalable Manufacturing Capability With Sanmina
5.9.6 ReWalk Leverages Core Technology Platforms
5.10 RexBionics
5.11 Rostec
5.11.1 Rostec Lines Of Business
5.11.2 Rostec Corporation Objectives
5.12 Sarcos
5.12.1 Sarcos LC Acquires Raytheon Sarcos Unit
5.13 Shepherd Center
5.14 Socon (U.S. Special Operations Command)
5.15 Trek Aerospace
5.16 University of Twente
5.17 United Instrument Manufacturing Corporation

About The Company

Research Methodology

List of Tables and Figures:
Table ES-1 Rehabilitation Robot Market Driving Forces
Figure ES-2 Exoskeleton Market Shares, Dollars, Worldwide, 2014
Figure ES-3 Wearable Robot, Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2015-2021
Table 1-1 Robotic Rehabilitation Devices Automated Process Benefits
Table 1-2 Robotic Rehabilitation Devices Emerging Technologies
Table 1-3 Robotic Rehabilitation Wearable Devices Benefits
Table 1-4 Rehabilitation Involves Relearning Lost Function
Table 1-5 Rehabilitation Lost Function Relearning Initiatives
Table 2-1 Rehabilitation Robot Market Driving Forces
Figure 2-2 Wearable Robot Exoskeleton Market Shares, Dollars, Worldwide, 2014
Table 2-3 Wearable Robot Exoskeleton Market Shares, Dollars, Worldwide, 2014
Table 2-4 Exoskeleton Rehabilitation Robot Market Shares, Dollars and Units, Worldwide, 2014
Table 2-5 Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine:
Figure 2-6 Homoca Continuum of Rehabilitation
Figure 2-7 Comparison of the Hocoma Armeo Products
Figure 2-8 Wearable Robot, Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2015-2021
Table 2-9 Exoskeleton Wearable Robots: Dollars Shipments, Worldwide, 2015-2021
Table 2-10 Exoskeleton Robots: Units Shipments, Worldwide, 2015-2021
Table 2-11 Wearable Robot Exoskeleton Market Segments, High End and Low End, Units and Dollars, Worldwide, 2015-2021
Table 2-12 Wearable Robots, Exoskeleton Robot Market Segments, Medical and Industrial, Dollars, Worldwide, 2015-2021
Table 2-13 Wearable Robots, Exoskeleton Robot Market Segments, Medical, Quadriplegia, Multiple Sclerosis, Stroke and Cerebral Palsy, Dollars, Worldwide, 2015-2021
Table 2-14 Wearable Robots, Exoskeleton Robot Market Segments, Medical, Quadriplegia, Multiple Sclerosis, Stroke and Cerebral Palsy, Percent, Worldwide, 2015-2021
Table 2-15 Spinal Cord Injury Causes, Worldwide, 2014
Figure 2-16 Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
Table 2-17 Wearable Robots, Exoskeleton Robot Market Segments, Industrial, Ship Building, Construction, Warehouse, and Manufacturing, Dollars, Worldwide, 2015-
Table 2-18 Wearable Robots, Exoskeleton Robot Market Segments, Industrial, Ship Building, Construction, Warehouse, and Manufacturing, Percent, Worldwide, 2015-2021
Table 2-20 Robot Market Segments, Industrial, Warehouse Logistics, Cargo Unloading, Military, Surgical, Medical, Rehabilitation, Agricultural, Cleaning, Drones, Market Forecasts 2015 to 2020 116
Table 2-21 Exoskeleton Market Penetration Forecasts Worldwide, High End Facilities, Small and Mid Size Rehabilitation Facilities, 2014-2020
Table 2-23 Rehabilitation Small and Mid-Size Facility Robot Market Penetration Forecasts Worldwide, 2014-2020
Table 2-24 Rehabilitation High End Facility Robot Market Penetration Forecasts, Worldwide, 2014-2020
Table 2-25 Rehabilitation Robot Categories
Table 2-26 US Stroke Incidence Numbers
Table 2-27 Physical Therapy Enhances Recovery After Hip Injury
Figure 2-28 Rehabilitation Robots Regional Market Segments, Dollars, 2014
Table 2-29 Rehabilitation Robots Regional Market Segments, 2014
Figure 2-30 Japanese Exoskeleton Self-Defense Forces
Figure 2-31 Ekso Bionics Regional Presence Source: Ekso Bionics.
Figure 2-32 Chinese Researchers at the PLA Information Engineering University Test How To Control Robots With The Mind
Figure 2-33 Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
Figure 3-2 Ekso Bionics Gait Training
Figure 3-3 Ekso Bionics Gait Training Functions
Table 3-4 Ekso Gait Training Exoskeleton Functions
by Means Of Series Elastic Actuation
Figure 3-68 Prototype of University to Twente in the Netherlands LOPES with 8 actuated Degrees of Freedom
by Means Of Series Elastic Actuation
Figure 3-69 China North Industries Group Assisted Lifting
Figure 3-70 Chinese Future Exoskeleton Warrior
Table 3-71 Russian Army: Combat Exoskeleton Features
Figure 3-72 Russian Exoskeleton Prototype
Figure 3-73 UK Equipping police officers with technology
Figure 3-74 UK Police Officer Exoskeleton
Figure 3-75 UK Exoskeleton Provides Compelling Law Enforcement Presence
Figure 3-76 University of Texas in Austin Robotic Upper Arm Exoskeleton
Figure 3-77 Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
Figure 3-78 Daewoo Exoskeleton 28-Kilogram Frame Weight.
Figure 3-79 Daewoo Exoskeleton Lifting
Figure 3-80 Daewoo Shipbuilding Wearable Robot Box Carrying Applications
Figure 3-81 Daewoo Shipbuilding & Marine Engineering (DSME) Wearable Robot Tank Insulation
Figure 3-82 Daewoo Insulation Boxes Used To Line The Tanks of LNG Carriers
Figure 3-83 Daewoo Shipbuilding Wearable Robot Applications
Figure 3-84 Lockheed HULC Exoskeleton
Figure 3-85 Lockheed Martin FORTIS Exoskeleton Welding
Figure 3-86 Lockheed Martin FORTIS Exoskeleton Supporting
Figure 3-87 US Navy Lockheed Martin Exoskeleton
Table 4-1 Industrial Exoskeleton Standards Benefits
Table 4-2 Industrial Exoskeleton Standards Functions
Figure 4-3 Industrial Robot Exoskeleton Standards
Figure 4-4 Sarcos Guardian XO Capabilities
Figure 4-5 Sarcos Guardian XOS Work Augmentation
Table 4-6 Exoskeleton System Concerns Addressed During System Design
Table 4-10 Rehabilitation Robots Software Functions
Table 5-1 AlterG Anti-Gravity Treadmillsr Features 321 Built on differential air pressure technology
Table 5-2 AlterG Anti-Gravity Treadmillsr Target Markets
Table 5-3 AlterG Product Positioning
Figure 5-4 Selected US Regional AlterG M300 Customer CLusters
Figure 5-5 AlterG / Tibion Bionic Leg
Table 5-6 China North Industries Corporation (NORINCO) Enterprise Group Product And Capital Operations Activities
Figure 5-7 Cyberdyne HAL Lower Back Support
Figure 5-8 Ekso Bionics Regional Presence
Table 5-9 Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine:
Table 5-10 Hocoma Therapy Solutions Treatments
Figure 5-11 Lockheed Martin Segment Positioning
Table 5-12 Lockheed Martin's Operating Units
Figure 5-13 Lockheed Martin Aeronautics Segment Positioning
Figure 5-14 Lockheed Martin Aeronautics Segment Portfolio
Figure 5-15 Lockheed Martin Aeronautics C130 Worldwide Airlift
Figure 5-16 Lockheed Martin Aeronautics Falcon Fighter
Figure 5-17 Lockheed Martin Electronic Systems Portfolio
Table 5-18 Revision Military On Going Projects
Table 5-19 Rostec Lines Of Business
Table 5-20 Rostec Corporation Objectives
Table 5-21 Principal Functions Of The Corporation
Figure 5-22 Trek Aerospace Exoskeleton
Figure 5-23 Trek Aerospace Exoskeleton Components

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3450927/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/3450927/
Office Code: SCDKBIX9

Product Formats
Please select the product formats and quantity you require:

Quantity
Electronic (PDF) - Single User: □ USD 4000
Electronic (PDF) - Enterprisewide: □ USD 8000

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: □ Mr □ Mrs □ Dr □ Miss □ Ms □ Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World