
Description: Superconductivity—the absence of electrical resistance in certain materials at very low temperatures—continues to be of great scientific, technological and commercial interest. The purpose of Superconductors is to generate high magnetic fields. And in terms of magnetic fields, Superconductors rule.

It has been 104 years since the initial discovery of superconductivity in 1911. Since then, only one, major commercial application has developed: Magnetic Resonance Imaging (MRI) in the 1980s. Even so, MRI along with other superconductor applications has developed into a global market worth billions.

A renaissance of superconductivity applications could appear in the next 3-7 years (2018-2023) and will be based not on incremental progress in the existing technologies but rather on a radical breakthrough in a different, highly attractive and rapidly growing industries, including clean energy and electric power equipment.

The primary focus of this report is Superconductor Wire—both Low Temperature and High Temperature. Superconductor Wire is what makes Superconductivity applications possible.

The secondary focus of this report is on applications for Superconductor Wire. The major application for Superconductor Wire to date is magnetic resonance imaging (MRI) scanners. MRI technologies and markets are thus examined in detail in this report.

The question is: what will be the next generation commercial applications for Superconductor Wire? At present, the new applications are thought to be electrical equipment and nuclear fusion power. So, both these technologies and potential markets are discussed in detail in this report.

Included in the report are detailed analyses of:

- Global Market For Superconductivity: Existing vs. Emerging Applications by Type and Low Temperature vs. High Temperature Superconductors.
- Global Market for Low Temperature and High Temperature Superconductor Wire.
- Global Superconductor Wire Market by Application.
- Producers of Low Temperature and High Temperature Superconductor Wire.
- Low Temperature and High Temperature Superconductor Wire Sales and Market Shares by Producer.
- Global MRI Market, Metrics and Producers.
- Global Market for Utility Equipment Including Cables, Medium and High Voltage Transformers, Medium and High Voltage Switchgear and Motors.

The report also includes comprehensive evaluations of:

- The Seven Eras in Superconductor Technology.
- Existing and Emerging Superconductor Applications.
- Low Temperature Superconductor vs. High Temperature Superconductor Applications
- Opportunities Beyond MRI.
- Utilities Markets for High Temperature Superconductors.
- Future World Electric Energy Requirements.
- Nuclear Fusion and Superconducting Tokamaks.
- ITER Project: Conductor Procurement Companies, Procurement Costs by Product, Conductor Costs, LHC Conductor Costs.
- Fusion Entrepreneurs: Private Sector Companies Doing Fusion Power R&D and Capital Investments in These Companies.
Additionally, profiles of 24 leading foreign and U.S. Superconductor wire manufacturers are given, along with 30 tables and 115 figures.

Contents:

1. Executive Summary

2. Introduction
   - Report Objectives
   - Methodology and Sources
   - Statistical Notes

3. Superconductivity: Science, Technology and Industry Overview
   - Original Discovery
   - Three Parameters Describing Superconductors
   - 100+ Year History of Superconductivity by Era
     - Era of Science and Discovery (1908–1961)
     - Era of Technology and Innovation (1962–1970)
     - Era of industry Consolidation (2004–2007)
     - Future of Superconductivity Technology
   - Kondratiev Waves and Technology Innovation
   - Superconductivity Technology Waves
   - Bust Phase of Technology Cycle
   - Electrical Equipment and Fusion Energy

4. Superconductor Market
   - Purpose of Superconductors
   - Market Segments
   - Existing Applications
   - Emerging Applications
   - Emerging Large-Scale Applications
   - Emerging Electronic Applications
   - Market by Existing Applications
   - Market by Emerging Applications
   - Low Temperature Superconductor vs. High Temperature Superconductor Applications
   - Opportunities Beyond MRI
   - Problems with HTS
   - Government Projects Will Fund HTS
   - Need for Young Minds

5. Superconductor Wire Market
   - LTS and HTS Definitions
   - Properties of Superconductors Used in Industrial Applications
   - Low Temperature Superconductors
     - Copper as a Matrix Material
     - Production Flow for Technical Superconductors
     - General Design of NbTi Conductor
     - General Design of Nb3Sn (Bronz. Conductor
     - General Design of Nb3Sn (Internal Ti. Conductor
     - Properties NbTi vs. Nb3Sn
     - NbTi Manufacturing Process
   - LTS Present Applications
   - Magnetic Resonance Imaging (MRI)
   - Nuclear Magnetic Resonance (NMR)
   - High Energy Physics
   - Superconducting Magnetic Energy Storage (SMES)
   - Nuclear Fusion
   - Alpha Magnetic Spectrometer II (AMS II)
   - Other Applications
   - High Temperature Superconductors and Magnet Technology
   - Magnesium Diboride
- MgB2-based MRI Magnets
- MgB2 Conductor Developments
- Columbus Superconductors PIT Technique
- MgB2 Challenges Remain
- OpenSky 0.5 T MgB2 MRI Scanner
- Development of HTS Conductors
- HTS Critical Parameters
- HTS Conductor Cost
- Stress Limitations
- Reliable Manufacturing
- Persistent Joints
- Quench Protection
- YBCO Conductor Manufacturers
- HTS YBCO Challenges
- YBCO Unlikely in MRIs
- First HTS MRI Scanner
- HTS Commercial Development Requirements
- Realization of Commercial HTS Industry
- LTS vs. HTS Price Trends
- Global Superconductor Wire Market
- Low and High Temperature Superconductor Wire Markets
- Superconductor Wire Market by Application
- Competitive Environment

6. Magnetic Resonance Imaging Market
- MRI Overview
- MRI Technology
- MRI Commercialized Superconductivity
- Magnet Strength Measure
- Types of MRI Magnets
- Advantages/Disadvantages of Resistive-Magnet MRIs
- Advantages/Disadvantages of Permanent-Magnet MRIs
- Advantages/Disadvantages of Superconducting-Magnet MRIs
- MRI Uses Majority of Superconducting Materials
- Field Strength
- Advantages of Higher Field MRIs
- Challenges / Disadvantages / Limitations of Higher-Field MRIs
- Lower Field Scanners Fading Away
- 3 Tesla Scanners Now Predominant
- Changing Definition of High Field
- Magnet Shape and Orientation
- Design Issues
- Open Vs. Cylindrical Systems
- Magnet Design
- Compactness and Accessibility
- Uniformity and Persistence
- Stray Magnetic Field and Shielding
- Refrigeration
- NbTi vs. HTS Conductors
- Magnesium Diboride Magnets
- Global MRI Production: 2015-2020
- Upside Limits on MRI Production
- Global MRI Production by Type: 2015
- Superconducting Components Share of MRI Production
- Global MRI Installed Base
- U.S. MRI Installed Base by Type
- Cylindrical Vs. Open Installed Systems
- Bore Size in New Installations
- U.S. MRI Site Budgets for Systems
- MRI Procedures Done in the U.S. Annually
- U.S MRI Procedures Done Compared to Other Countries
- U.S. Sites Where MRI Procedures Are Performed
- U.S. MRI Procedures by Study
7. Utilities Markets for High Temperature Superconductors
- HTS Barriers to Adoption
- HTS Wire Cost Must Be Reduced
- HTS Equipment Applications
- Cable
- Triaxial Cable
- Transformers
- Fault Current Limiters
- Motors and Generators
- Superconducting Magnetic Energy Storage (SMES)
- Utilities Available Market for Superconductor Products
- Global Utility Cable/Lines Market
- Global Superconducting Cable Market
- Global Utility Transformer Market
- Global Fault Current Limiter Market
- Global Utility Switchgear Market
- Global Utility Motors Market
- Sakura Internet DC Power Transmission Project
- Sakura Cable Manufactured by SEI
- Superconducting Cable and DC Transmission Reduce Power Consumption by 30%
- New Addressable Market
- Technical Issues

8. Nuclear Fusion, Superconductivity, ITER Project and Power Generation Markets
- Promise of Near Limitless Energy
- Superconductivity the Key Enabling Technology
- Twice as Much Power Needed by 2050
- ITER Is the Largest Applied Superconductivity Project
- Sustainable Energy System Needed
- Future World Population
- Future World Electric Energy Requirements
- Huge Growth In Energy Demand Forecast
- Specific Energy of Available Fuels
- Scale of the Energy Problem
- Future Power Requirements Needed
- Carbon-Free Energy Sources
- Nuclear
- Carbon Sequestration
- Renewables
- Sustainable Energy Policies
- Nuclear Power
- Fusion vs. Fission Reactions
- Nuclear Fusion
- Nuclear Fusion Fuels
- Nuclear Fusion Products
- Nuclear Fusion Reactor
- Challenges of Fusion
- Plasma Confinement
- Tokamaks
- Conventional vs. Superconducting Tokamaks
- Advantages of Superconductivity
- Drawbacks of Superconductivity
- Superconducting Fusion Machines
- Superconductor Materials Development
- Superconducting Wire Production
- ITER Project Overview
- Project Management
- ITER Site Construction
- ITER Tokamak and Magnet System
- Feeders
- Largest Superconducting Magnet Built
- ITER Magnet System Supply
- ITER Conductors Overview
- TF and CS Conductors
- Conductor Manufacture
- Jacketing Lines
- Quality Assurance, Quality Control and ITER Conductor Database

List of Tables:
1. Global Market For Superconductivity: Existing vs. Emerging Applications by Type and Low Temperature vs. High Temperature Superconductors: ($ Million): 2015-2020
2. Properties NbTi vs. Nb3Sn
3. Parameters of the ASG MgB2 Magnet Used in the Paramed OpenSky MRI System
4. Low Temperature and High Temperature Superconductor Wire Prices by Critical Temperature and Type ($/kA-m): 2015
5. Global Market for Superconductor Wire ($ Million, Million Meters, Average Selling Price in $/kA-m): 2015-2020
10. Typical Parameters of Cylindrical MRI Magnets
11. Requirements To MRI Magnets
12. Global MRI Production Volume (Units), Value ($ Million), Average Selling Price ($/Unit): 2015-2020
13. Global MRI Production Volume by Type (Units), Value ($ Million), Average Selling Price ($/Unit): 2015
14. Superconducting Components Share of 1.5 T and 3+ T MRI Production ($ Million): 2015
15. U.S. MRI Scanner Installed Base by Type: 2013-2020
16. MRI System Producers: 2015
23. World Renewable Energy Resources By Type (TW)
24. ITER Procurements by Product, Procurement Type, Investment (kIU. and Country
25. ITER Conductor And Magnets Procurement Costs by Type (kIUA)
26. Large Hadron Collider Conductors and Components Costs by Type (CHF Million
28. Global Power Generation Equipment Market by Product Class Including Coal, Gas, Nuclear, Hydroelectric,
Renewables ($ Billion): 2015-2019

List of Figures:
1. Superconducting Region
2. Production Flow for Technical Superconductors
3. Luvata OK 55 NbTi Conductor for NMR Cross-Section
4. Luvata OKSn 11600 Conductor Cross-Section
5. Nb3Sn Formation
6. Luvata Fusion Type Conductor Cross-Section
7. NbTi Manufacturing Process
8. Phase I of NbTi Wire Manufacture: Mono
9. Mono NbTi Rods: 25mm – 2.5mm
10. Phase II of NbTi Wire Manufacture: Multi
11. MRI System and LTS Conductors
12. NMR System and LTS Conductors
13. LTS Conductors for High Energy Physics
14. View of CERN LHC Tunnel 100 Meters Below the Earth's Surface Showing Superconducting Magnets Inside the Tubes
15. Compact Myon Solenoid (CM. Is One of Two Large General Purpose Particle Physics Detectors on LHC
16. LHC Compact Myon Solenoid (CM. Conductors
17. Superconducting Magnetic Energy Storage (SME, Nb-Ti Conductors
18. International Thermonuclear Experiment Reactor (ITE, and NbTi and Nb3Sn Conductors
19. Alpha Magnetic Spectrometer II and NbTi Conductors
20. Input Cooling Power in Per Cent of Requirements at 4.2 K
   Vs. Temperature of LTS, MgB2, HTS
21. MgB2 Wire Manufactured in Various Configurations
22. Paramed OpenSky MRI Scanner
25. HTS Throughput Variables
28. Cross-Section of a Traditional Cylindrical MRI Scanner and Its Components (Multi-coil Design)
29. Patient Comfort and Compactness
30. Typical Coil Configuration of A Cylindrical Actively Shielded MRI Magnet
31. Progress in MRI Refrigeration Technology
32. MRI Exams Performed Per Thousand Population by U.S. Vs. OECD Various Countries: 2014
33. Triad Cable Components
34. HTS Triaxial Cables
35. LS Cable 22-kV Triad Cable
36. InnoPower 220-kV Fault Current Limiter
37. History Of World Energy Production By Source Type (EJ/Year): 1900-2010
38. Shares of Various Energy Sources In World Energy Production, Showing Energy Transitions (%): 1900-2010
40. Specific Energy Of Large-Scale Fuels
41. Power Units: The Terawatt Challenge
42. Global Energy Consumption By Source (TW): 2001
43. Global Energy Reserves And Resource Base By Type and Conventional vs. Unconventional in Exa Joules
44. Global Primary Power Use By Source And Year (TW): 1990-2050
45. Nuclear Requirements to Get 10 TW Of Power
46. 1 GW (Electri. or 3 GW (Therma. Annual Production Requirements by Fuel Source
47. Fission and Fusion Nuclear Reactions
48. Nuclear Fusion Reaction
49. Nuclear Fusion Fuels
50. Nuclear Fusion Products
51. Challenges of Fusion
52. Plasma Confinement
53. Tokamaks
54. Conventional vs. Superconducting Tokamaks
<table>
<thead>
<tr>
<th>No.</th>
<th>Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.</td>
<td>Large Superconducting Magnet Systems</td>
</tr>
<tr>
<td>56.</td>
<td>Large Cryostat Systems</td>
</tr>
<tr>
<td>57.</td>
<td>Superconducting Fusion Machines</td>
</tr>
<tr>
<td>58.</td>
<td>Superconducting Materials and Their Critical Current Density</td>
</tr>
<tr>
<td>59.</td>
<td>Superconducting Wire Production</td>
</tr>
<tr>
<td>60.</td>
<td>ITER Parties Procurement Allocations</td>
</tr>
<tr>
<td>61.</td>
<td>ITER Site Construction</td>
</tr>
<tr>
<td>62.</td>
<td>ITER Tokamak Schematic</td>
</tr>
<tr>
<td>63.</td>
<td>ITER Tokamak Scale</td>
</tr>
<tr>
<td>64.</td>
<td>ITER Magnet System</td>
</tr>
<tr>
<td>65.</td>
<td>ITER Feeder System</td>
</tr>
<tr>
<td>66.</td>
<td>ITER Magnet Suppliers by Type and Country</td>
</tr>
<tr>
<td>67.</td>
<td>ITER Strand Zoo: Conductors by Type and Suppliers</td>
</tr>
<tr>
<td>68.</td>
<td>Main Steps of ITER CICC Manufacture</td>
</tr>
<tr>
<td>69.</td>
<td>ITER Strand Production by Company and Country</td>
</tr>
<tr>
<td>70.</td>
<td>ITER Jacketing Lines Around the World</td>
</tr>
<tr>
<td>71.</td>
<td>ITER Conductor QA/QC Flow Diagram</td>
</tr>
<tr>
<td>72.</td>
<td>ITER Strand Production Status by Type (Tonnes)</td>
</tr>
<tr>
<td>73.</td>
<td>ITER TF Strand Billet Weight Distribution by Country</td>
</tr>
<tr>
<td>74.</td>
<td>Companies by Country Contributing to ITER Conductor Procurement</td>
</tr>
<tr>
<td>75.</td>
<td>Proximity Effect Magnesium Diboride-Based ScNc Particles</td>
</tr>
<tr>
<td>76.</td>
<td>Japan Superconducting Technology Superconducting Wire Products Specs</td>
</tr>
<tr>
<td>77.</td>
<td>Japan Superconducting Technology ITER Nb3Sn Wire</td>
</tr>
<tr>
<td>78.</td>
<td>Japan Superconducting Technology NMR Superconducting Wire Products</td>
</tr>
<tr>
<td>79.</td>
<td>Oxford Instruments Nb-Ti/Wire in Channel Superconducting Wire</td>
</tr>
<tr>
<td>80.</td>
<td>SH Copper Products Hydrostatic Extruder and the Principle of Hydrostatic Extrusion</td>
</tr>
<tr>
<td>81.</td>
<td>SH Copper Products Nb3Sn Cables</td>
</tr>
<tr>
<td>82.</td>
<td>SH Copper Products Aluminum Stabilized NbTi Cables</td>
</tr>
<tr>
<td>83.</td>
<td>SH Copper Products Internal Tin Nb3Sn Wires RHQT Processed and JR Nb3Al Wires</td>
</tr>
<tr>
<td>84.</td>
<td>SH Copper Products Mass Production Process of Wires and Cables</td>
</tr>
<tr>
<td>85.</td>
<td>SH Copper Products Rectangular NbTi Wires</td>
</tr>
<tr>
<td>86.</td>
<td>SH Copper Products Round and Rectangular Nb3Sn Wires</td>
</tr>
<tr>
<td>87.</td>
<td>SH Copper Products Aluminum Stabilized NbTi Conductor Process</td>
</tr>
<tr>
<td>88.</td>
<td>Hitachi Metals Nb3Sn Wire and Cable Products for ITER</td>
</tr>
<tr>
<td>89.</td>
<td>Range of Elements that Structured Materials Industries' MOCVD Technology Has or Can Produce</td>
</tr>
<tr>
<td>90.</td>
<td>Structured Materials Industries MOCVD Tools</td>
</tr>
<tr>
<td>91.</td>
<td>Structured Materials Industries Analytic Capabilities</td>
</tr>
<tr>
<td>92.</td>
<td>Structured Materials Industries Clients</td>
</tr>
<tr>
<td>93.</td>
<td>SuNam 2G Wire Specifications Table</td>
</tr>
<tr>
<td>94.</td>
<td>Cross-Section of SuNam Superconducting Wire</td>
</tr>
<tr>
<td>95.</td>
<td>SuNam 2G Wire Architecture</td>
</tr>
<tr>
<td>96.</td>
<td>SuNam 2G Wire Production System</td>
</tr>
<tr>
<td>97.</td>
<td>SuNam RHEED Vision System</td>
</tr>
<tr>
<td>98.</td>
<td>SuNam RCE Vision System</td>
</tr>
<tr>
<td>99.</td>
<td>SuNam Coated Conductor Goals</td>
</tr>
<tr>
<td>100.</td>
<td>SuNam HTS Revenue and Capex Goals</td>
</tr>
<tr>
<td>102.</td>
<td>Conductus® Wire Materials</td>
</tr>
<tr>
<td>103.</td>
<td>Conductus® Solution Deposition Planarization</td>
</tr>
<tr>
<td>104.</td>
<td>Conductus® Ion Beam Assisted Deposition</td>
</tr>
<tr>
<td>105.</td>
<td>Conductus® Reactive Co-evaporation and Cyclic Deposition Reaction System</td>
</tr>
<tr>
<td>106.</td>
<td>SuperOx Technology Profile: 2006-2015</td>
</tr>
<tr>
<td>107.</td>
<td>SuperOx 2G HTS Tape Architecture</td>
</tr>
<tr>
<td>108.</td>
<td>SuperOx 2G HTS Tape Applications</td>
</tr>
<tr>
<td>109.</td>
<td>SuperOx 2G HTS Wire Blocks for Magnetic Levitation</td>
</tr>
<tr>
<td>110.</td>
<td>Furukawa History in Low Temperature Superconductors</td>
</tr>
<tr>
<td>111.</td>
<td>SuperPower Manufacturing Facilities</td>
</tr>
<tr>
<td>112.</td>
<td>SuperPower (RE)BCO Superconductor Architecture</td>
</tr>
<tr>
<td>113.</td>
<td>SuperPower Bonded Tapes Production</td>
</tr>
<tr>
<td>114.</td>
<td>SuperPower Cable Configurations</td>
</tr>
<tr>
<td>115.</td>
<td>69 kV FCL Transformer High Voltage Module</td>
</tr>
</tbody>
</table>
Ordering:  
Order Online - http://www.researchandmarkets.com/reports/3505753/
Order by Fax - using the form below
Order by Post - print the order form below and send to

    Research and Markets,
    Guinness Centre,
    Taylors Lane,
    Dublin 8,
    Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/3505753/
Office Code: SCPLD3H2

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 4200</td>
</tr>
<tr>
<td>Electronic (PDF) - Site License</td>
<td></td>
<td>USD 6300</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td></td>
<td>USD 8400</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [ ] Mr [ ] Mrs [ ] Dr [ ] Miss [ ] Ms [ ] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World