
Description:

Praise for the Third Edition:

This new third edition has been substantially rewritten and updated with new topics and material, new examples and exercises, and to more fully illustrate modern applications of RSM.

Zentralblatt Math

Featuring a substantial revision, the Fourth Edition of Response Surface Methodology: Process and Product Optimization Using Designed Experiments presents updated coverage on the underlying theory and applications of response surface methodology (RSM). Providing the assumptions and conditions necessary to successfully apply RSM in modern applications, the new edition covers classical and modern response surface designs in order to present a clear connection between the designs and analyses in RSM. With multiple revised sections with new topics and expanded coverage, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition includes:

Many updates on topics such as optimal designs, optimization techniques, robust parameter design, methods for design evaluation, computer-generated designs, multiple response optimization, and non-normal responses

Additional coverage on topics such as experiments with computer models, definitive screening designs, and data measured with error

Expanded integration of examples and experiments, which present up-to-date software applications, such as JMP®, SAS, and Design-Expert®, throughout

An extensive references section to help readers stay up-to-date with leading research in the field of RSM

An ideal textbook for upper-undergraduate and graduate-level courses in statistics, engineering, and chemical/physical sciences. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition is also a useful reference for applied statisticians and engineers in disciplines such as quality, process, and chemistry. Raymond H. Myers, PhD, is Professor Emeritus in the Department of Statistics at Virginia Polytechnic Institute and State University. He has more than 40 years of academic experience in the areas of experimental design and analysis, response surface analysis, and designs for nonlinear models. A Fellow of the American Statistical Association (ASA) and the American Society for Quality (ASQ), Dr. Myers has authored numerous journal articles and books, including Generalized Linear Models: with Applications in Engineering and the Sciences, Second Edition, also published by Wiley. Douglas C. Montgomery, PhD, is Regents' Professor of Industrial Engineering and Arizona State University Foundation Professor of Engineering. Dr. Montgomery has more than 30 years of academic and consulting experience and his research interest includes the design and analysis of experiments. He is a Fellow of ASA and the Institute of Industrial Engineers, and an Honorary Member of ASQ. He has authored numerous journal articles and books, including Design and Analysis of Experiments, Eighth Edition; Generalized Linear Models: with Applications in Engineering and the Sciences, Second Edition; Introduction to Introduction to Linear Regression Analysis, Fifth Edition; and Introduction to Time Series Analysis and Forecasting, Second Edition, all published by Wiley. Christine M. Anderson-Cook, PhD, is a Research Scientist and Project Leader in the Statistical Sciences Group at the Los Alamos National Laboratory, New Mexico. Dr. Anderson-Cook has over 20 years of academic and consulting experience, and has written numerous journal articles on the topics of design of experiments, response surface methodology and reliability. She is a Fellow of the ASA and ASQ.

Contents:

Preface xiii

1 Introduction 1

1.1 Response Surface Methodology, 1

1.1.1 Approximating Response Functions, 2

1.1.2 The Sequential Nature of RSM, 7

1.1.3 Objectives and Typical Applications of RSM, 9
1.1.4 RSM and the Philosophy of Quality Improvement, 11
1.2 Product Design and Formulation (Mixture Problems), 11
1.3 Robust Design and Process Robustness Studies, 12
1.4 Useful References on RSM, 12
2 Building Empirical Models 13
2.1 Linear Regression Models, 13
2.2 Estimation of the Parameters in Linear Regression Models, 14
2.3 Properties of the Least Squares Estimators and Estimation of 2, 22
2.4 Hypothesis Testing in Multiple Regression, 24
2.4.1 Test for Significance of Regression, 24
2.4.2 Tests on Individual Regression Coefficients and Groups of Coefficients, 27
2.5 Confidence Intervals in Multiple Regression, 31
2.5.1 Confidence Intervals on the Individual Regression Coefficients , 32
2.5.2 A Joint Confidence Region on the Regression Coefficients , 32
2.5.3 Confidence Interval on the Mean Response, 33
2.6 Prediction of New Response Observations, 35
2.7 Model Adequacy Checking, 36
2.7.1 Residual Analysis, 36
2.7.2 Scaling Residuals, 38
2.7.3 Influence Diagnostics, 42
2.7.4 Testing for Lack of Fit, 43
2.8 Fitting a Second–Order Model, 47
2.9 Qualitative Regressor Variables, 55
2.10 Transformation of the Response Variable, 61
Exercises, 66
3 Two–Level Factorial Designs 81
3.1 Introduction, 81
3.2 The 2^2 Design, 82
3.3 The 2^3 Design, 94
3.4 The General 2^k Design, 103
3.5 A Single Replicate of the 2^k Design, 108
3.6 2k Designs are Optimal Designs, 125
3.7 The Addition of Center Points to the 2k Design, 130
3.8 Blocking in the 2k Factorial Design, 135
3.8.1 Blocking in the Replicated Design, 135
3.8.2 Confounding in the 2k Design, 137
3.9 Split–Plot Designs, 141
Exercises, 146
4 Two–Level Fractional Factorial Designs 161
4.1 Introduction, 161
4.2 The One–Half Fraction of the 2k Design, 162
4.3 The One–Quarter Fraction of the 2k Design, 174
4.4 The General 2k p Fractional Factorial Design, 184
4.5 Resolution III Designs, 188
4.6 Resolution IV and V Designs, 197
4.7 Alias Structures in Fractional Factorial and Other Designs, 198
4.8 Nonregular Fractional Factorial Designs, 200
4.8.1 Nonregular Fractional Factorial Designs for 6, 7, and 8 Factors in 16 Runs, 203
4.8.2 Nonregular Fractional Factorial Designs for 9 Through 14 Factors in 16 Runs, 209
4.8.3 Analysis of Nonregular Fractional Factorial Designs, 213
4.9 Fractional Factorial Split–Plot Designs, 216
4.10 Summary, 219
Exercises, 220
5 Process Improvement with Steepest Ascent 233
5.1 Determining the Path of Steepest Ascent, 234
5.1.1 Development of the Procedure, 234
5.1.2 Practical Application of the Method of Steepest Ascent, 237
5.2 Consideration of Interaction and Curvature, 241
5.2.1 What About a Second Phase?, 244
5.2.2 What Happens Following Steepest Ascent?, 244
5.3 Effect of Scale (Choosing Range of Factors), 245
5.4 Confidence Region for Direction of Steepest Ascent, 247
5.5 Steepest Ascent Subject to a Linear Constraint, 250
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8 RSM for Non-Normal Responses</td>
<td>591</td>
</tr>
<tr>
<td>10.8.1 Model Framework: The Link Function</td>
<td>592</td>
</tr>
<tr>
<td>10.8.2 The Canonical Link Function</td>
<td>593</td>
</tr>
<tr>
<td>10.8.3 Estimation of Model Coefficients</td>
<td>593</td>
</tr>
<tr>
<td>10.8.4 Properties of Model Coefficients</td>
<td>595</td>
</tr>
<tr>
<td>10.8.5 Model Deviance</td>
<td>595</td>
</tr>
<tr>
<td>10.8.6 Overdispersion</td>
<td>597</td>
</tr>
<tr>
<td>10.8.7 Examples</td>
<td>598</td>
</tr>
<tr>
<td>10.8.8 Diagnostic Plots and Other Aspects of the GLM</td>
<td>605</td>
</tr>
<tr>
<td>Exercises</td>
<td>609</td>
</tr>
<tr>
<td>11 Robust Parameter Design and Process Robustness Studies</td>
<td>619</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>619</td>
</tr>
<tr>
<td>11.2 What is Parameter Design?</td>
<td>619</td>
</tr>
<tr>
<td>11.2.1 Examples of Noise Variables</td>
<td>620</td>
</tr>
<tr>
<td>11.2.2 An Example of Robust Product Design</td>
<td>621</td>
</tr>
<tr>
<td>11.3 The Taguchi Approach</td>
<td>622</td>
</tr>
<tr>
<td>11.3.1 Crossed Array Designs and Signal-to-Noise Ratios</td>
<td>622</td>
</tr>
<tr>
<td>11.3.2 Analysis Methods</td>
<td>625</td>
</tr>
<tr>
<td>11.3.3 Further Comments</td>
<td>630</td>
</tr>
<tr>
<td>11.4 The Response Surface Approach</td>
<td>631</td>
</tr>
<tr>
<td>11.4.1 The Role of the Control × Noise Interaction</td>
<td>631</td>
</tr>
<tr>
<td>11.4.2 A Model Containing Both Control and Noise Variables</td>
<td>635</td>
</tr>
<tr>
<td>11.4.3 Generalization of Mean and Variance Modeling</td>
<td>638</td>
</tr>
<tr>
<td>11.4.4 Analysis Procedures Associated with the Two Response Surfaces</td>
<td>642</td>
</tr>
<tr>
<td>11.4.5 Estimation of the Process Variance</td>
<td>651</td>
</tr>
<tr>
<td>11.4.6 Direct Variance Modeling</td>
<td>655</td>
</tr>
<tr>
<td>11.4.7 Use of Generalized Linear Models</td>
<td>657</td>
</tr>
<tr>
<td>11.5 Experimental Designs For RPD and Process Robustness Studies</td>
<td>661</td>
</tr>
<tr>
<td>11.5.1 Combined Array Designs</td>
<td>661</td>
</tr>
<tr>
<td>11.5.2 Second-Order Designs</td>
<td>663</td>
</tr>
<tr>
<td>11.5.3 Other Aspects of Design</td>
<td>665</td>
</tr>
<tr>
<td>11.6 Dispersion Effects in Highly Fractionated Designs</td>
<td>672</td>
</tr>
</tbody>
</table>
11.6.1 The Use of Residuals, 673
11.6.2 Further Diagnostic Information from Residuals, 674
11.6.3 Further Comments Concerning Variance Modeling, 680
Exercises, 684
12 Experiments with Mixtures 693
12.1 Introduction, 693
12.2 Simplex Designs and Canonical Mixture Polynomials, 696
12.2.1 Simplex Lattice Designs, 696
12.2.2 The Simplex-Centroid Design and Its Associated Polynomial, 704
12.2.3 Augmentation of Simplex Designs with Axial Runs, 707
12.3 Response Trace Plots, 716
12.4 Reparameterizing Canonical Mixture Models to Contain A Constant Term (θ), 716
Exercises, 720
13 Other Mixture Design and Analysis Techniques 731
13.1 Constraints on the Component Proportions, 731
13.1.1 Lower-Bound Constraints on the Component Proportions, 732
13.1.2 Upper-Bound Constraints on the Component Proportions, 743
13.1.3 Active Upper- and Lower-Bound Constraints, 747
13.1.4 Multicomponent Constraints, 758
13.2 Mixture Experiments Using Ratios of Components, 759
13.3 Process Variables in Mixture Experiments, 763
13.3.1 Mixture-Process Model and Design Basics, 763
13.3.2 Split-Plot Designs for Mixture-Process Experiments, 767
13.3.3 Robust Parameter Designs for Mixture-Process Experiments, 778
13.4 Screening Mixture Components, 783
Exercises, 785
Appendix 1 Moment Matrix of a Rotatable Design 797
Appendix 2 Rotatability of a Second-Order Equiradial Design 803
References 807
Index 821
Ordering:

Order Online - http://www.researchandmarkets.com/reports/3610043/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Web Address: http://www.researchandmarkets.com/reports/3610043/
Office Code: SCBRX6U4

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>USD 136 + USD 29 Shipping/Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td></td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp