Biomedical Applications and Toxicology of Carbon Nanomaterials

Description: An overview of biomedical applications and the toxicity properties of carbon nanomaterials aimed at helping to avoid detrimental health effects while laying the groundwork for further research in this highly relevant field.

Summarizing recent research, the book starts with the synthesis and functionalization of carbon nanomaterials, as well as identification and detection in biosystems. It then moves on to the interaction between carbon nanoparticles and biocomponents, focusing on the toxicity and mechanisms to various organs and systems and potential biomedical applications as well. Each section highlights the challenges, outlines unanswered questions, and suggests directions for further research and development efforts.

Contents:

List of Contributors XIX

Preface XXV

1 Synthesis, Functionalization, and Characterization 1
Jianxun Xu, Xing Lu, and Baowen Li

1.1 Introduction 1

1.2 Fullerenes and Metallofullerenes 1

1.2.1 Synthesis and Purification 2

1.2.1.1 Synthesis 2

1.2.2 Chemical Functionalization 3

1.2.2.1 Carbene Reaction 3

1.2.2.2 Bingel-Hirsch Reaction 4

1.2.2.3 Prato Reaction 5

1.2.2.4 Bis–Silylation 5

1.2.2.5 Diels–Alder Reaction and Benzyne Reaction 5

1.2.2.6 Singly Bonded Addition 6

1.2.2.7 Supramolecular Complexes of EMFs 6

1.2.3 Characterization 6

1.2.3.1 Synchrotron Radiation Powder Diffraction (SRPD)/Rietveld/MEM 6

1.2.3.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 7

1.2.3.3 Theoretical Calculation 7

1.2.3.4 Single-Crystal X-ray Diffraction Crystallography 7

1.2.3.5 Others 8
1.2.4 Questions and Future Directions 8
1.3 Carbon Nanotubes 8
1.3.1 Synthesis 9
1.3.1.1 Arc Discharge Method 9
1.3.1.2 Laser Ablation Method 10
1.3.1.3 CVD Method 10
1.3.1.4 Synthesis of CNTs with a Defined Structure 10
1.3.2 Functionalization 11
1.3.2.1 Covalent Chemical Reactions 11
1.3.2.2 Noncovalent Modifications 11
1.3.3 Characterization 12
1.3.3.1 Microscopic Characterizations 12
1.3.3.2 Spectroscopic Characterizations 13
1.3.4 Questions and Future Directions 13
1.4 Graphene 14
1.4.1 Synthesis and Characterization 14
1.4.2 Functionalization of Graphene and Graphene Oxide 17
1.4.3 Prospects and Challenges 18
1.5 Summary and Outlook 20
References 21

2 Identification and Detection of Carbon Nanomaterials in Biological Systems 29
Haifang Wang, Zheng–Mei Song, Yi–Fan Yang, Aoneng Cao, and Yuanfang Liu

2.1 Introduction 29
2.2 Available Techniques for Qualitative and Quantitative Determination 30
2.2.1 Optical Microscopic Observation 30
2.2.2 Electron Microscopic (EM) Observation 31
2.2.3 Raman Spectroscopic Measurement 33
2.2.4 Fluorescence Analysis 36
2.2.4.1 Intrinsic Fluorescence Analysis 36
2.2.4.2 Labeled Fluorescence Analysis 39
2.2.5 Isotope Labeling Method 39
2.2.5.1 Radioisotope Labeling 40
4.2.2 Biological Microenvironment

4.2.2.1 pH

4.2.2.2 Ionic Strength

4.2.2.3 Weak Interactions

4.2.2.4 Cell Selectivity

4.3 Interaction of Carbon Nanomaterials with Various Components in Biological Systems

4.3.1 Characterization and Methodology of Interaction of Carbon Nanomaterials with Components in the Biological System

4.3.2 Carbon Nanomaterial – Phospholipid Interaction

4.3.3 Carbon Nanomaterial – Protein Interaction

4.3.4 Carbon Nanomaterial – DNA Interaction

4.3.5 Carbon Nanomaterial – Cell Interaction

4.4 Conclusion and Perspectives

References

5 Biomedical Applications of Carbon Nanomaterials

5.1 Introduction

5.2 Biomedical Applications of Fullerenes

5.2.1 Fullerenes as Antioxidants and Neuroprotective Agents

5.2.2 Fullerenes as Antitumor Agents

5.2.3 Metallofullerenes as MRI Contrast Agent

5.2.4 Fullerenes for Other Applications

5.3 Biomedical Applications of Carbon Nanotubes

5.3.1 Carbon Nanotubes for Drug Delivery

5.3.1.1 Carbon Nanotubes for the Delivery of Small Drug Molecules

5.3.1.2 Carbon Nanotubes for the Delivery of Biomacromolecules

5.3.2 Carbon Nanotubes for Photothermal and Combined Therapies of Tumors

5.3.2.1 Carbon Nanotubes for Photothermal Therapy of Tumors

5.3.2.2 Carbon Nanotubes for Combined Therapies of Tumors

5.3.3 Carbon Nanotubes for Bioimaging

5.3.3.1 Carbon Nanotubes for Fluorescence Imaging

5.3.3.2 Carbon Nanotubes for Raman Imaging

5.3.3.3 Carbon Nanotubes for Photoacoustic Imaging
5.3.3.4 Carbon Nanotubes for Other Bioimaging Modalities 145
5.3.4 Carbon Nanotubes for Other Biomedical Applications 146
5.4 Biomedical Applications of Graphene 146
5.4.1 Graphene for Drug Delivery 147
5.4.1.1 Graphene for the Delivery of Small Drug Molecules 148
5.4.1.2 Graphene for the Delivery of Biomacromolecules 148
5.4.2 Graphene for Photothermal and Combined Therapies of Tumors 151
5.4.3 Graphene for Bioimaging 152
5.4.4 Graphene for Other Biomedical Applications 153
5.5 Conclusion and Perspectives 153
Acknowledgments 154

References 155

6 Pulmonary Effects of Carbon Nanomaterials 163
Liying Wang, Donna C. Davidson, Vincent Castranova, and Yon Rojanasakul

6.1 Introduction 163
6.2 Physicochemical Properties of Carbon Nanomaterials 164
6.2.1 Types of Carbon Nanomaterials 165
6.2.2 Effects of Size 165
6.2.3 Effects of Agglomeration State 166
6.2.4 Aspect Ratio Considerations 168
6.2.5 Surface Modifications 168
6.3 Fate of Pulmonary Exposed Carbon Nanoparticles (Deposition, Distribution, Translocation, and Clearance) 169
6.3.1 Deposition and Distribution of Carbon Nanoparticles in the Lung 169
6.3.2 Translocation of Carbon Nanoparticles 172
6.3.3 Clearance of Carbon Nanomaterials from the Lungs 175
6.4 Carbon Nanomaterial Induced Lung Responses 176
6.4.1 Key/Specific Target Lung Cell Types of Pulmonary-Exposed Carbon Nanoparticles 176
6.4.2 Lung Inflammation 178
6.4.3 Immune Response 179
6.4.4 Fibrosis 180
6.4.5 Genotoxicity 181
References 234

9 Neuro–, Hepato–, and Nephrotoxicity of Carbon–based Nanomaterials 239
Jia Yao and Yongbin Zhang

9.1 Carbon–based Nanomaterials: Introduction 239

9.2 Neurotoxicity of Carbon–based Nanomaterials 240

9.2.1 Blood Brain Barrier and BBB Penetration by Carbon–based Nanomaterials 240

9.2.2 Neurotoxicity of Carbon Nanotubes 241

9.2.3 Strategies to Reduce Neurotoxicity of Carbon Nanotubes 243

9.2.4 Neurotoxicity of Other Carbon–based Nanomaterials 244

9.3 Hepato and Nephrotoxicity of Carbon–based Nanomaterials 245

9.3.1 Carbon Nanotube Biodistribution in the Liver and Kidney 245

9.3.2 Biodistribution of Other Carbon Nanomaterials 248

9.3.3 Hepatotoxicity of Carbon Nanotubes 251

9.3.4 Carbon Nanotube Nephrotoxicity/Renal Toxicity 254

9.3.5 Hepatotoxicity and Nephrotoxicity of Other Types of Carbon–based Nanomaterials 254

9.4 Points of Consideration for Toxicity Evaluation of Carbon–based Nanomaterials 257

9.5 Summary 259
Acknowledgments 259

References 259

10 Genotoxicity and Carcinogenic Potential of Carbon Nanomaterials 267
Todd A. Stueckle, Linda Sargent, Yon Rojanasakul, and Liying Wang

10.1 Introduction 267

10.1.1 Engineered Nanomaterials and Long–Term Disease Risk: An Introduction 269

10.1.2 Carcinogenesis: A Multistep Process 270

10.1.2.1 Genotoxicity and Initiation 271

10.1.2.2 Promotion 272

10.1.2.3 Progression 274

10.1.3 Current Knowledge and Challenges in Carcinogenesis Studies 274

10.2 Carbon Nanomaterials: Genotoxicity and Carcinogenic Potential 275

10.2.1 Physicochemical Properties of ECNMs 275

10.2.2 Ultrafine Carbon Black 276

10.2.2.1 In Vivo Studies 277

10.2.2.2 In Vitro Studies 278
11.3 Insights into the Molecular Mechanisms 342
11.3.1 Potential Toxicity to the Female Reproductive System 342
11.3.2 Potential Toxicity to Male Reproduction of Carbon Nanomaterials 343
11.3.3 Potential Toxicity to Offspring of Carbon Nanomaterials 345
11.3.4 Impact on the Endocrine Organs and Hormone Biosynthesis/Metabolism 346
11.3.5 Others 348
11.4 Conclusion and Perspectives 348
Acknowledgments 352
References 352

12 Immunological Responses Induced by Carbon Nanotubes Exposed to Skin and Gastric and Intestinal System 357
Haiyan Xu, JieMeng, Qiang Ma, and Xiaojin Li

12.1 Introduction 357
12.2 Biological Effects of CNTs by Dermal Exposure 358
12.2.1 In Vitro Assessment in Dermal–Related Cell Lines 358
12.2.2 In Vivo Studies on the Responses Elicited by Skin Exposed with CNTs 361
12.3 Immunological Reactions Elicited by Subcutaneous Administration of MWCNTs 362
12.3.1 Preparation and Characterization of Multiwalled Carbon Nanotubes for Uses in Studies 362
12.3.2 Distribution of Subcutaneously Injected Carbon Nanotubes 363
12.3.3 Immunological Responses Induced by Subcutaneously Injected MWCNTs 369
12.3.3.1 Macrophages Responses Exerted by MWCNTs 370
12.3.3.2 MWCNTs Attract Naïve Monocyte Macrophages Through Activating Macrophages in the Subcutis 373
12.3.3.3 Subcutaneously Injected MWCNTs Induce Complement Activation 375
12.3.3.4 Subcutaneously Injected MWCNTs Elevate Pro–inflammatory Cytokines in the Blood 376
12.4 Immunological Responses Induced by Subcutaneous Administration of MWCNTs in Tumor–Bearing Mice 377
12.4.1 MWCNTs Induce Systematic Immune Responses in Tumor–Bearing Mice 378
12.4.2 MWCNTs Upregulate Multiple Pro–inflammatory Cytokines in the Blood 378
12.4.3 MWCNTs Mediate Cytotoxicity of Lymphocytes 379
12.4.4 MWCNTs Induce Complement Activation 380
12.4.5 MWCNTs Attract Monocyte–Macrophages to Affect the Microenvironment of Tumor Mass 380
12.5 CNTs as Antigen Delivery System to Enhance Immune Responses Against Tumors 383
12.6 Immunological Responses of Gastric and Intestinal Systems Exposed to Carbon Nanotubes 386

References 389

13 Modulation of Immune System by Carbon Nanotubes 397
Marit Ilves and Harri Alenius

13.1 Immune System 397
13.1.1 Innate Immunity Cells and Their Main Functions 398
13.1.2 Adaptive Immunity Cells and Their Main Functions 399
13.2 Carbon Nanotubes (CNTs) and Innate Immunity 400
13.2.1 Complement Activation 401
13.2.2 Macrophages 402
13.2.3 Activation of Inflammasome Complex and IL-1β Secretion 405
13.2.4 Neutrophils 406
13.2.5 Innate Lymphoid Cells (ILCs) 408
13.2.6 Dendritic Cells 408
13.3 CNTs and Adaptive Immunity 409
13.3.1 The Effects of CNTs on Vaccine Delivery and Immunotherapy 409
13.3.2 Utilization of CNT Scaffolds in the Expanding and Modulation of Immune Cells 411
13.3.3 Immunosuppressive Effects of CNTs 413
13.4 The Effect of CNTs in Allergy and Asthma 414
13.4.1 Allergic Reactions and Their Immunological Mechanisms 414
13.4.2 Asthma 415
13.4.3 Allergic Pulmonary Inflammation Induced by Airway Exposure to CNTs 417
13.4.4 Modulation of Allergen-Induced Airway Inflammation by Exposure to CNTs 418
13.4.5 CNT in the Context of Mast Cells and Eosinophils 420
13.4.6 Role of IL-33 Pathway in CNT-Induced Allergic Responses 420
13.5 Conclusions and Future Prospects 422

References 424

14 Carbon Dots: Synthesis, Bioimaging, and Biosafety Assessment 429
Jie Wang and Yao He

14.1 Introduction 429
14.1.1 Synthesis and Fabrication of C-dots 429
14.1.2 Bioimaging of C-dots 431
14.1.3 Biosafety Assessment of C-dots 432
15.2.2.1 Oxidation 488
15.2.2.2 Photochemical Transformation 490
15.2.2.3 Dissolution and Precipitation 491
15.2.2.4 Adsorption 492
15.2.2.5 Biodegradation 493
15.3 Ecotoxicity of Fullerene 494
15.3.1 Effect of Fullerene on Microorganisms 494
15.3.2 Effect of Fullerene on Animals 495
15.3.2.1 Effect of Fullerene on Invertebrates 495
15.3.2.2 Effect of Fullerene on Vertebrates 496
15.3.3 Effect of Fullerene on Plants 496
15.3.3.1 Effect of Fullerene on Algae 496
15.3.3.2 Effect of Fullerene on Higher Plants 497
15.4 Ecotoxicity of Carbon Nanotubes (CNTs) 498
15.4.1 Effect of CNTs on Microorganisms 498
15.4.2 Effect of CNTs on Animals 499
15.4.2.1 Effect of CNTs on Invertebrates 499
15.4.2.2 Effect of CNTs on Vertebrates 501
15.4.3 Effect of CNTs on Plants 502
15.4.3.1 Effect of CNTs on Algae 502
15.4.3.2 Effect of CNTs on Higher Plants 503
15.5 Ecotoxicity of Graphene 504
15.6 Conclusion and Perspectives 506
Acknowledgments 506
References 506

16 Exposure Scenarios in the Workplace and Risk Assessment of Carbon Nanomaterials 515
Rui Chen and Chunying Chen
16.1 Introduction 515
16.1.1 Background 515
16.1.2 Exposure Routes and Exposure Scenarios 515
16.1.3 Exposure Metrics 516
16.1.4 Occupation Exposure Limit for Carbon Nanomaterials 516
16.1.5 Strategy for Exposure Assessment of Carbon Nanomaterials 517
16.2 Potential Exposure in the Workplace 519
16.2.1 Carbon Nanotubes 519
16.2.2 Fullerenes, Metallofullerenes, and Graphenes 525
16.3 Exposure Risk Assessment and Engineering Control 527
16.3.1 Risk Assessment Strategy on Carbon Nanomaterials 527
16.3.2 Inhalation Exposure Assessment Method 529
16.3.3 Exposure Controls 530
16.4 Summary and Outlook 531
Acknowledgments 531
References 531
Index 535

Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit 
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Biomedical Applications and Toxicology of Carbon Nanomaterials
Web Address: http://www.researchandmarkets.com/reports/3610102/
Office Code: SCBRUC9O

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): □ USD 158 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World