Description: Reflecting the fast pace and ever–evolving nature of the financial industry, the Handbook of High–Frequency Trading and Modeling in Finance details how high–frequency analysis presents new systematic approaches to implementing quantitative activities with high–frequency financial data.

Introducing new and established mathematical foundations necessary to analyze realistic market models and scenarios, the handbook begins with a presentation of the dynamics and complexity of futures and derivatives markets as well as a portfolio optimization problem using quantum computers. Subsequently, the handbook addresses estimating complex model parameters using high–frequency data. Finally, the handbook focuses on the links between models used in financial markets and models used in other research areas such as geophysics, fossil records, and earthquake studies. The Handbook of High–Frequency Trading and Modeling in Finance also features:

Contributions by well–known experts within the academic, industrial, and regulatory fields

A well–structured outline on the various data analysis methodologies used to identify new trading opportunities

Newly emerging quantitative tools that address growing concerns relating to high–frequency data such as stochastic volatility and volatility tracking; stochastic jump processes for limit–order books and broader market indicators; and options markets

Practical applications using real–world data to help readers better understand the presented material

The Handbook of High–Frequency Trading and Modeling in Finance is an excellent reference for professionals in the fields of business, applied statistics, econometrics, and financial engineering. The handbook is also a good supplement for graduate and MBA–level courses on quantitative finance, volatility, and financial econometrics.

Ionut Florescu, PhD, is Research Associate Professor in Financial Engineering and Director of the Hanlon Financial Systems Laboratory at Stevens Institute of Technology. His research interests include stochastic volatility, stochastic partial differential equations, Monte Carlo Methods, and numerical methods for stochastic processes. Dr. Florescu is the author of Probability and Stochastic Processes, the coauthor of Handbook of Probability, and the coeditor of Handbook of Modeling High–Frequency Data in Finance, all published by Wiley.

Contents: Notes on Contributors xiii

Preface xv

1 Trends and Trades 1
Michael Carlisle, Olympia Hadjiliadis, and Ioannis Stamos

1.1 Introduction 1

1.2 A trend–based trading strategy 3

1.2.1 Signaling and trends 3

1.2.2 Gain over a subperiod 5

1.3 CUSUM timing 7

1.3.1 Cusum process and stopping time 7
5.1 Introduction 107

5.1.1 The original motivation 108

5.1.2 The model and the problem 108

5.1.3 A brief historical note 109

5.2 The methodology 110

5.2.1 Obtaining filtered empirical distributions at t_1, \ldots, t_T 110

5.2.2 Obtaining the parameters of the Markov chain 112

5.3 Results obtained applying the model to real data 113

5.3.1 Part i: financial applications 113

5.3.2 Part ii: physical data application; temperature data 119

5.3.3 Part iii: analysis of seismometer readings during an earthquake 121

5.3.4 Analysis of the earthquake signal: beginning 123

5.3.5 Analysis: during the earthquake 125

5.3.6 Analysis: end of the earthquake signal, aftershocks 127

5.4 Conclusion 127

5.A Theoretical results and empirical testing 128

5.A.1 How does the particle filter work? 128

5.A.2 Theoretical results about convergence and parameter estimates 129

5.A.3 Markov chain parameter estimates 131

5.A.4 Empirical testing 132

5.A.5 A list of supplementary documents 133

References 133

6 Detecting Jumps in High-Frequency Prices Under Stochastic Volatility: A Review and a Data-Driven Approach 137

Ping-Chen Tsai and Mark B. Shackleton

6.1 Introduction 137

6.2 Review on the intraday jump tests 140

6.2.1 Realized volatility measure and the BNS tests 140

6.2.2 The ABD and LM tests 142

6.3 A data-driven testing procedure 146

6.3.1 Spy data and microstructure noise 146

6.3.2 A generalized testing procedure 149
6.4 Simulation study 153
6.4.1 Model specification 153
6.4.2 Simulation results 158
6.5 Empirical results 161
6.5.1 Results on the backward-looking test 162
6.5.2 Results on the interpolated test 165
6.6 Conclusion 165

Acknowledgments 166

Appendix 6.A: Least-square estimation of HAR–MA (2) model for log(BP) of SPY 167
Appendix 6.B: Estimation of ARMA (2, 1) model for log(BP) of SPY 168
Appendix 6.C: Minimized loss function loss(1, 2) for SV2FJ—2 model, SPY 169
Appendix 6.D.1: Calibration of under SV2FJ—2 model at 2-min frequency, E[Nt] = 0.08 170
Appendix 6.D.2: Calibration of under SV2FJ—2 model at 2-min frequency, E[Nt] = 0.40 171
Appendix 6.D.3: Calibration of under SV2FJ—2 model at 5-min frequency, E[Nt] = 0.08 172
Appendix 6.D.4: Calibration of under SV2FJ—2 Model at 5-min frequency, E[Nt] = 0.40 173
Appendix 6.D.5: Calibration of under SV2FJ—2 model at 10-min frequency, E[Nt] = 0.08 174
Appendix 6.D.6: Calibration of under SV2FJ—2 model at 10-min frequency, E[Nt] = 0.40 175

References 175

7 Hawkes Processes and Their Applications to High-Frequency Data Modeling 183
Baron Law and Frederi G. Viens

7.1 Introduction 183
7.2 Point processes 184
7.3 Hawkes processes 186
7.3.1 Branching structure representation 188
7.3.2 Stationarity 188
7.3.3 Convergence 189
7.4 Statistical inference of Hawkes processes 191
7.4.1 Simulation 191
7.4.2 Estimation 194
7.4.3 Hypothesis testing 197
7.5 Applications of Hawkes processes 198
7.5.1 Modeling order arrivals 199
9.2.3 Numerical applications 259
9.3 Interpolation methods 271
9.3.1 Nearest-neighbor interpolation 271
9.3.2 Bilinear interpolation 272
9.3.3 Bicubic interpolation 276
9.3.4 Biharmonic interpolation 277
9.3.5 Thin plate splines 282
9.3.6 Numerical applications 285
9.4 Conclusion 287
Acknowledgments 292
References 292

10 Study of Volatility Structures in Geophysics and Finance Using Garch Models 295
Maria C. Mariani, F. Biney, and I. SenGupta

10.1 Introduction 295
10.2 Short memory models 297
10.2.1 ARMA(p,q) model 297
10.2.2 GARCH(p,q) model 297
10.2.3 IGARCH(1,1) model 298
10.3 Long memory models 298
10.3.1 ARFIMA(p,d,q) model 299
10.3.2 ARFIMA(p,d,q)-GARCH(r,s) 299
10.3.3 Intermediate memory process 300
10.3.4 Figarch model 300
10.4 Detection and estimation of long memory 302
10.4.1 Augmented dickey fuller test(ADF test) 302
10.4.2 KPSS test 303
10.4.3 Whittle method 304
10.5 Data collection, analysis, and result 306
10.5.1 Analysis on dow Jones index (DJIA) returns 306
10.5.2 Model selection and specification: conditional mean 306
10.5.3 Conditional mean model (returns) 309
10.5.4 Model diagnostics: ARMA(2, 2) 309
10.5.5 Test for ARCH effect 311
10.5.6 Model selection and specification: Conditional variance 313
10.5.7 Standardized residuals test 314
10.5.8 Model diagnostics 314
10.5.9 Returns and variance equation 315
10.5.10 Standardized residuals test 317
10.5.11 Model diagnostic of conditional returns with conditional variance 318
10.5.12 One–step ahead prediction of last 10 observations 330
10.5.13 Analysis on high–frequency, earthquake, and explosives series 330
10.6 Discussion and conclusion 335
References 337

11 Scale Invariance and Lévy Models Applied to Earthquakes and Financial High–Frequency Data 341
M. P. Beccar–Varela, Ionut Florescu, and I. SenGupta
11.1 Introduction 341
11.2 Governing equations for the deterministic model 342
11.2.1 Application to geophysical (earthquake data) 343
11.2.2 Results 344
11.3 L´evy flights and application to geophysics 345
11.3.1 Truncated L´evy flight distribution 353
11.3.2 Results 356
11.4 Application to the high–frequency market data 360
11.4.1 Methodology 360
11.4.2 Results 361
11.5 Brief program code description 362
11.6 Conclusion 364
11.A Appendix 366
11.A.1 Stable distributions 366
11.A.2 Characterization of stable distributions 367
References 368

12 Analysis of Generic Diversity in the Fossil Record, Earthquake Series, and High–Frequency Financial Data 371
M. P. Beccar Varela, F. Biney, Maria C. Mariani, I. SenGupta, M. Shpak, and P. Bezdek
12.1 Introduction 371
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Handbook of High-Frequency Trading and Modeling in Finance. Wiley Handbooks in Financial Engineering and Econometrics
Web Address: http://www.researchandmarkets.com/reports/3615573/
Office Code: SCPLZAAX

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back):

USD 136 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr Mrs Dr Miss Ms Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: ________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World