Asymmetric Dearomatization Reactions

Description: The first comprehensive account of the rapidly growing field of asymmetric dearomatization reactions with a focus on catalytic methods.

It introduces the concept of dearomatization and describes recent progress in asymmetric reaction procedures with different catalyst systems, such as organocatalysts, transition metal catalysts, and enzymes. Chapters on dearomatizations of electron-deficient aromatic rings, dearomatization reactions via transition metal-catalyzed cross-couplings as well as dearomatization strategies in the synthesis of complex natural products are also included.

Written by pioneers in the field, this is a highly valuable source of information not only for professional synthetic chemists in academia and industry but also for all those interested in asymmetric methodologies and organic synthesis in general.

Contents:

List of Contributors XIII

Preface XVII

1 Introduction 1
Wei Zhang and Shu-Li You

1.1 Why Asymmetric Dearomatization Reactions? 1

1.2 Discovery of Aromatic Compounds and Dearomatization Reactions 1

1.3 Development of Dearomatization Reactions 3

1.4 Asymmetric Dearomatization Reactions 7

References 8

2 Asymmetric Dearomatization with Chiral Auxiliaries and Reagents 9
E. Peter Kündig

2.1 Introduction 9

2.2 Chiral -Bound Auxiliaries 9

2.2.1 Oxazolines 9

2.2.2 Imines, Oxazolidines, and Hydrazones 15

2.2.3 Chiral Ethers and Amines 16

2.3 Diastereospecific Anionic Cyclizations 20

2.4 Use of Chiral Reagents 21

2.4.1 Chiral Bases in Dearomatizing Cyclizations 21

2.4.2 Chiral Nucleophiles 23

2.4.3 Chiral Ligands in Enantioselective Nucleophilic Additions 23

2.5 Chiral -Complexes 26
2.5.1 Planar Chiral 6–Arene Complexes 26
2.5.2 6–Arene Complexes with a Chiral Ligand 28
2.5.3 Complexes with Stereogenic Metal Centers 29
2.6 Conclusion 30
References 30

3 Organocatalytic Asymmetric Transfer Hydrogenation of (Hetero)Arenes 33
Gaëlle Mingat and Magnus Rueping

3.1 Introduction 33

3.2 Organocatalytic Asymmetric Transfer Hydrogenation of Heteroaromatics 34
3.2.1 Quinolines 34
3.2.1.1 Proof–of–Concept 34
3.2.1.2 2–Substituted Quinolines 35
3.2.1.3 4–Substituted Quinolines 40
3.2.1.4 3–Substituted Quinolines 41
3.2.1.5 2,3–Disubstituted Quinolines 42
3.2.1.6 Spiro–Tetrahydroquinolines 45
3.2.2 Benzoxazines, Benzothiazines, and Benzoxazinones 47
3.2.3 Benzodiazepines and Benzodiazepinones 49
3.2.4 Pyridines 51
3.2.5 3H–Indoles 51
3.2.6 Quinoxalines and Quinoxalinones 52

3.3 Organocatalytic Asymmetric Transfer Hydrogenation in Aqueous Solution 53

3.4 Cascade Reactions 54
3.4.1 Introduction 54
3.4.2 In situ Generation of the Heteroarene 54
3.4.3 Dearomatization of Pyridine/Asymmetric aza–Friedel Crafts Alkylation Cascade 56
3.4.4 Combining Photochemistry and Brønsted Acid Catalysis 57
3.4.4.1 Quinolines 57
3.4.4.2 Pyrylium ions 58

3.5 Cooperative and Relay Catalysis: Combining Brønsted Acid– and Metal–Catalysis 59
3.5.1 Introduction 59
3.5.2 Improvements in Transfer Hydrogenation 60
3.5.2.1 Regenerable Hydrogen Sources 60
3.5.2.2 Asymmetric Relay Catalysis (ARC) 62
3.5.3 Cooperative Metal Brønsted Acid Catalysis 63
3.6 Summary and Conclusion 65

References 66

4 Transition–Metal–Catalyzed Asymmetric Hydrogenation of Aromatics 69
Ryoichi Kuwano

4.1 Introduction 69

4.2 Catalytic Asymmetric Hydrogenation of Five–Membered Heteroarenes 71
4.2.1 Catalytic Asymmetric Hydrogenation of Azoles and Indoles 71
4.2.1.1 Rhodium–Catalyzed Asymmetric Hydrogenation of Indoles 71
4.2.1.2 Ruthenium–Catalyzed Asymmetric Hydrogenation of Azoles 73
4.2.1.3 Palladium–Catalyzed Asymmetric Hydrogenation of Azoles 75
4.2.1.4 Iridium–Catalyzed Asymmetric Hydrogenation of Indoles 77
4.2.2 Catalytic Asymmetric Hydrogenation of Oxygen–Containing Heteroarenes 77

4.2.3 Catalytic Asymmetric Hydrogenation of Sulfur–Containing Heteroarenes 79

4.3 Catalytic Asymmetric Hydrogenation of Six–Membered Heteroarenes 79
4.3.1 Catalytic Asymmetric Hydrogenation of Azines 80
4.3.1.1 Iridium–Catalyzed Asymmetric Hydrogenation of Pyridines 80
4.3.1.2 Iridium–Catalyzed Asymmetric Hydrogenation of Pyrimidines 81
4.3.2 Catalytic Asymmetric Hydrogenation of Benzo–Fused Azines 82
4.3.2.1 Iridium–Catalyzed Asymmetric Hydrogenation of Quinolines 82
4.3.2.2 Ruthenium–Catalyzed Asymmetric Hydrogenation of Quinolines 85
4.3.2.3 Iridium–Catalyzed Asymmetric Hydrogenation of Isoquinolines 87
4.3.2.4 Iridium–Catalyzed Asymmetric Hydrogenation of Quinoxalines 89
4.3.2.5 Ruthenium–Catalyzed Asymmetric Hydrogenation of Quinoxalines 90
4.3.2.6 Iron–Catalyzed Asymmetric Hydrogenation of Quinoxalines 92
4.3.2.7 Catalytic Asymmetric Hydrogenation of Miscellaneous Six–Membered Heteroarenes 92

4.3.3 Catalytic Asymmetric Reduction of Quinolines with Reducing Agents Other Than H2 94

4.4 Catalytic Asymmetric Hydrogenation of Carbocyclic Arenes 95
4.4.1 Ruthenium–Catalyzed Asymmetric Hydrogenation of Carbocycles in Benzo–Fused Heteroarenes 96
4.4.2 Ruthenium–Catalyzed Asymmetric Hydrogenation of Naphthalenes 97
4.5 Summary and Conclusion 97
References 98

5 Stepwise Asymmetric Dearomatization of Phenols 103
Qing Gu

5.1 Introduction 103
5.2 Stepwise Asymmetric Dearomatization of Phenols 103
5.2.1 Asymmetric [4+2] Reaction 103
5.2.2 Asymmetric Heck Reaction 106
5.2.3 Asymmetric (Hetero) Michael Reaction 108
5.2.4 Asymmetric Stetter Reaction 119
5.2.5 Asymmetric Rauhut Currier Reaction 120
5.2.6 Asymmetric 1,6-Dienyne Cyclized Reaction 122
5.3 Conclusion and Perspective 126
References 127

6 Asymmetric Oxidative Dearomatization Reaction 129
Muhammet Uyanik and Kazuaki Ishihara

6.1 Introduction 129
6.2 Diastereoselective Oxidative Dearomatization using Chiral Auxiliaries 129
6.3 Enantioselective Oxidative Dearomatization using Chiral Reagents or Catalysts 132
6.3.1 Chiral Transition Metal Complexes 132
6.3.2 Chiral Hypervalent Iodines(III, V) and Hypoiodites(I) 139
6.4 Conclusions and Perspectives 148
References 149

7 Asymmetric Dearomatization via Cycloaddition Reaction 153
Sarah E. Reisman, Madeleine E. Kieffer, and Haoxuan Wang

7.1 Introduction 153
7.2 [2+1] Cycloaddition 153
7.2.1 Asymmetric Büchner Reaction 153
7.2.2 Cyclopropanation of Heterocyclic Compounds 155
7.3 [3+2] Cycloaddition 156
7.4 [3+3] Cycloaddition 161
7.5 [4+2] Cycloaddition 163
7.6 [4+3] Cycloaddition 170
7.7 Conclusion 173

References 173

8 Organocatalytic Asymmetric Dearomatization Reactions 175
Susana S. Lopez, Sri K. Nimmagadda, and Jon C. Antilla

8.1 Introduction 175

8.2 Diels–Alder 175

8.3 Oxidative Dearomatization 179

8.4 Cascade Reactions 186

8.5 Stepwise 193

8.6 Nucleophilic Dearomatization 200

8.7 Summary and Conclusion 204

References 205

9 Dearomatization via Transition–Metal–Catalyzed Allylic Substitution Reactions 207
Tetsuhiro Nemoto and Yasumasa Hamada

9.1 Introduction 207

9.2 Dearomatization of Indoles and Pyrroles via Transition–Metal–Catalyzed Allylic Substitution Reactions 208

9.3 Dearomatization of Phenols via Transition–Metal–Catalyzed Allylic Substitution Reactions 216

9.4 Dearomatization of Phenols and Indoles via Activation of Propargyl Carbonates with Pd Catalyst 221

9.5 Conclusion 226

References 226

10 Dearomatization via Transition–Metal–Catalyzed Cross–Coupling Reactions 229
Robin B. Bedford

10.1 Introduction: From Cross–Coupling to Catalytic Dearomatization 229

10.2 Dearomatization of Phenolic Substrates 231

10.3 Dearomatization of Nitrogen–Containing Substrates 240

10.4 Conclusion and Outlook 244

References 245

11 Dearomatization Reactions of Electron–Deficient Aromatic Rings 247
Chihiro Tsukano and Yoshiji Takemoto

11.1 Introduction 247

11.2 Dearomatization of Activated Pyridines and Other Electron–Deficient Heterocycles 248

11.2.1 Dearomatization via Alkyl Pyridinium Salts 248

11.2.1.1 Reduction with Borohydrides 248
11.2.1.2 Reduction with Na2S2O4 249
11.2.1.3 Reduction with Other Reducing Agents 250
11.2.1.4 Nucleophilic Addition of Grignard Reagents 251
11.2.1.5 Nucleophilic Addition of Cyanide 252
11.2.1.6 Addition of Other Carbon Nucleophiles 252
11.2.2 Dearomatization via Alkoxycarbonylpyridinium Salts 253
11.2.2.1 Reduction with Hydride Nucleophiles 254
11.2.2.2 Addition of Metal Nucleophiles, Including Grignard Reagents 255
11.2.2.3 Addition of Enolates and Related Carbon Nucleophiles 261
11.2.2.4 Nucleophilic Addition of Cyanide 264
11.2.2.5 Addition of Other Nucleophiles 265
11.2.3 Dearomatization via Acyl Pyridinium Salts 266
11.2.3.1 Reduction with Hydride Reducing Agents 266
11.2.3.2 Addition of Metal Nucleophiles Including Grignard Reagents 269
11.2.3.3 Addition of Enolates and Related Carbon Nucleophiles 270
11.2.4 Dearomatization through Other Pyridinium Cations 270
11.3 Summary and Conclusion 274
References 274

12 Asymmetric Dearomatization Under Enzymatic Conditions 279
Simon E. Lewis

12.1 Introduction 279
12.2 Dearomatizing Arene cis–Dihydroxylation 280
12.2.1 Early Development 280
12.2.2 Types of Arene Dioxygenase 281
12.2.3 Substrate Scope and Regioselectivity 283
12.2.3.1 Monocyclic Substituted Benzene Substrates (Excluding Biaryls) 299
12.2.3.2 Biaryl Substrates 299
12.2.3.3 Naphthalene Substrates 299
12.2.3.4 Benzoic Acid Substrates 299
12.2.3.5 Heterocyclic Substrates (Mono– and Bicyclic) 300
12.2.3.6 Bicyclic Carbocyclic Substrates (Other than Naphthalenes) 300
12.2.3.7 Tricyclic Substrates (Carbo– and Heterocyclic) 300
Wei Zhang and Shu-Li You

14.1 Introduction 379

14.2 Miscellaneous Asymmetric Dearomatization Reactions 379

14.3 Conclusions and Perspectives 388

References 388

Index 391


Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Asymmetric Dearomatization Reactions
Web Address: http://www.researchandmarkets.com/reports/3615625/
Office Code: SCG3HCSC

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hard Copy (Hard Back)</th>
<th>USD 154 + USD 29 Shipping/Handling</th>
</tr>
</thead>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ___________________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World