Photochromic Materials. Preparation, Properties and Applications

Description: Summarizing all the latest trends and recent topics in one handy volume, this book covers everything needed for a solid understanding of photochromic materials.

Following a general introduction to organic photochromic materials, the authors move on to discuss not only the underlying theory but also the properties of such materials. After a selection of applications, they look at the latest achievements in traditional solution-phase applications, including photochromic-based molecular logic operations and memory, optically modulated supramolecular system and sensors, as well as light-tunable chemical reactions. The book then describes the hot-spot areas of photo-switchable surfaces and nanomaterials, photochromic-based luminescence/electronic devices and bulk materials together with light-regulated biological and bio-chemical systems. The authors conclude with a focus on current industrial applications and the future outlook for these materials.

Written with both senior researchers and entrants to the field in mind.

Contents:

List of Contributors XI

1 Introduction: Organic Photochromic Molecules 1
Keitaro Nakatani, Jonathan Piard, Pei Yu, and Rêmi Métivier

1.1 Photochromic Systems 1

1.1.1 General Introduction 1

1.1.2 Basic Principles 4

1.1.3 Photochromic Molecules: Some History 5

1.2 Organic Photochromic Molecules: Main Families 8

1.2.1 Proton Transfer 9

1.2.2 Trans Cis Photoisomerization 12

1.2.3 Homolytic Cleavage 13

1.2.4 Cyclization Reaction 14

1.2.4.1 Spiropyrans, Spirooxazines, and Chromenes 14

1.2.4.2 Fulgides and Fulgimides 17

1.2.4.3 Diarylethenes 18

1.3 Molecular Design to Improve the Performance 20

1.3.1 Figures of Merit 20

1.3.2 Fatigue Resistance: Increasing the Number of Operating Cycles 21

1.3.3 Bistability: Avoiding Unwanted Thermal Back-Reaction in the Dark 23

1.3.3.1 Influence of Ethenic Bridge on the Thermal Stability of the B Form 24

1.3.3.2 Impact of the Heteroaryl Substituents on the Thermal Stability of the B Form 24
1.3.4 Fast Photochromic Systems: Reverting Back Spontaneously to the Colorless State in a Glance 25

1.3.5 Gaining Efficiency of the Photoreaction: the Example of Diarylethenes 26

1.4 Conclusion 31

Irradiation at a Specific Wavelength: Isosbestic Point 32

Case A: When the Thermal Back–Reaction is Negligible Compared to the Photochemical Reaction (Typically P–type) 33

Case B: When the Thermal Back–Reaction is More Efficient than the Photochemical B – A Reaction (Typically Type) 34

References 34

2 Photochromic Transitional Metal Complexes for Photosensitization 47
Chi–Chiu Ko and Vivian Wing–Wah Yam

2.1 Introduction 47

2.2 Photosensitization of Stilbene– and Azo–Containing Ligands 48

2.3 Photosensitization of Spirooxazine–Containing Ligands 51

2.4 Photosensitization of Diarylethene–Containing Ligands 54

2.5 Photosensitization of Photochromic N – C–Chelate Organoboranes 63

2.6 Conclusion 65

References 66

3 Multi–addressable Photochromic Materials 71
Shangjun Chen, Wenlong Li, and Weihong Zhu

3.1 Molecular Logic Gates 71

3.1.1 Two–Input Logic Gates 71

3.1.2 Combinatorial Logic Systems 74

3.1.2.1 Half–Adder and Half–Subtractor 74

3.1.2.2 Keypad Locks 77

3.1.2.3 Digital Encoder and Decoder 82

3.2 Data Storage and Molecular Memory 84

3.2.1 Fluorescence Spectroscopy 85

3.2.2 Infrared Spectroscopy 90

3.2.3 Optical Rotation 92

3.3 Gated Photochromores 95

3.3.1 Hydrogen Bonding 95

3.3.2 Coordination 98
5.4.2 Selectivity Control 185
5.5 Outlook 187
References 190

6 Surface and Interfacial Photoswitches 195
Junji Zhang and He Tian

6.1 Photochromic SAMs 196
6.1.1 Photochromic Electrode SAMs 196
6.1.2 Photoreversible Functional Surfaces 198
6.1.2.1 Photoswitchable Surface Wettability 198
6.1.2.2 Photocontrolled Capture-and-Release System 202
6.1.2.3 Smart Photochromic Surface Based on Supramolecular Systems 203
6.1.2.4 Photochromic Surface for Molecular Data Processing 205
6.2 Photoregulated Nanoparticles 206
6.2.1 Photochromic Switches on Traditional Metal Nanoparticles 208
6.2.1.1 Photoswitching on the Metal Nanoparticles 208
6.2.1.2 Photoinduced Reversible Aggregation of Nanoparticles and Their Versatile Applications 210
6.2.2 Photochromic Switches on Other Novel Functional Nanoparticles 215
6.2.2.1 Photoswitchable Magnetic Nanoparticles 215
6.2.2.2 Photomanipulated Quantum Dots 215
6.2.2.3 Photochromic with Upconversion Nanoparticles 218
6.2.3 Photocontrolled Mesoporous Silica Nanoparticles 220
6.2.3.1 Photo-nanovalves 220
6.2.3.2 Photo-nanoimpellers 223
6.2.3.3 NIR Light-Triggered MSN Drug Delivery and Therapeutic Systems 224
6.3 Photocontrolled Surface Conductance 226
6.3.1 Photochromic Conductance Switching Based on SAMs 226
6.3.2 Photochromic Conductance on Single-Molecule Level 228
References 231

7 Hybrid Organic/Photochromic Approaches to Generate Multifunctional Materials, Interfaces, and Devices 243
Emanuele Orgiu and Paolo Samori

7.1 Introduction 243
7.1.1 Tuning the Charge Injection in Organic-Based Devices by Means of Photochromic Molecules 245
7.2 Tuning the Polaronic Transport in Organic Semiconductors by Means of Photochromic Molecules 251
7.2.1 Photochromic Molecules and Organic Semiconductors Incorporated in Dyads, Multiads, and Polymers 251
7.2.2 The Multilayer Approach 254
7.2.3 The Blending Approach 255
7.3 Photoresponsive Dielectric Interfaces and Bulk 262
7.4 Conclusions and Future Outlooks 267
Acknowledgments 268
References 268

8 Photochromic Bulk Materials 281
Masakazu Morimoto, Seiya Kobatake, Masahiro Irie, Hari Krishna Bisoyi, Quan Li, Sheng Wang, and He Tian
8.1 Photochromic Polymers 281
8.1.1 Glass Transition Temperature 281
8.1.2 Fluorescence 283
8.1.3 Conductivity 287
8.1.4 Living Radical Polymerization 288
8.1.5 Surface Relief Grating 290
8.1.6 Photomechanical Effect 290
8.2 Single–Crystalline Photoswitches 293
8.2.1 Crystalline–State Photochromic Materials 293
8.2.2 Photochromic Diarylethene Single Crystals 293
8.2.3 In situ X–ray Crystallographic Analysis of Photoisomerization Reaction 295
8.2.4 Photoisomerization Quantum Yields 296
8.2.5 Multicolor Photochromism of Multicomponent Crystals 297
8.2.6 Nanoperiodic Structures Fabricated by Photochromic Reactions 299
8.2.7 Photoinduced Shape Changes and Mechanical Performance 301
8.3 Photochromic Liquid Crystals 305
8.3.1 Introduction 305
8.3.2 Spiropyran– and Spirooxazine–Based Photochromic Liquid Crystals 309
8.3.3 Diarylethene–Based Photochromic Liquid Crystals 314
8.3.4 Azobenzene–Based Photochromic Liquid Crystals 320
8.3.5 Other Photochromic Liquid Crystals 327
9.4.3 Photoswitchable Ion Channels and Receptors 379
9.4.3.1 Photocontrol of Channel Activation and Desensitization with a Tethered Glutamate 380
9.4.3.2 Photocontrol of Insulin Release Using a Small Molecular Sulfonylurea 380
9.4.3.3 Photocontrol of Receptors Using Red Light 381
9.4.4 Photoswitchable Nucleotides 382
9.4.4.1 Spiropyran-Modified Oligonucleotide Backbones 382
9.4.4.2 Controlling RNA Duplex Hybridization with Light 384
9.4.4.3 Diarylethene-Modified Oligonucleotides 385
9.5 Summary 386
References 386

10 Industrial Applications and Perspectives 393
Junji Zhang and He Tian
10.1 Industrialization and Commercialization of Organic Photochromic Materials 393
10.1.1 Commercialized T-type Photochromic Materials 395
10.1.2 Commercialized P-Type Photochromic Materials 398
10.2 Perspectives for Organic Photochromic Materials 399
References 409
Index 417
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- **Product Name:** Photochromic Materials. Preparation, Properties and Applications
- **Web Address:** http://www.researchandmarkets.com/reports/3615628/
- **Office Code:** SCG3LZEJ

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back) | USD 134 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

- **Title:**
 - Mr []
 - Mrs []
 - Dr []
 - Miss []
 - Ms []
 - Prof []
- **First Name:** ____________________________
- **Last Name:** ____________________________
- **Email Address:** * ____________________________
- **Job Title:** ____________________________
- **Organisation:** ____________________________
- **Address:** ____________________________
- **City:** ____________________________
- **Postal / Zip Code:** ____________________________
- **Country:** ____________________________
- **Phone Number:** ____________________________
- **Fax Number:** ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World