Photochromic Materials. Preparation, Properties and Applications

Description:
Summarizing all the latest trends and recent topics in one handy volume, this book covers everything needed for a solid understanding of photochromic materials.

Following a general introduction to organic photochromic materials, the authors move on to discuss not only the underlying theory but also the properties of such materials. After a selection of applications, they look at the latest achievements in traditional solution–phase applications, including photochromic–based molecular logic operations and memory, optically modulated supramolecular system and sensors, as well as light–tunable chemical reactions. The book then describes the hot–spot areas of photo–switchable surfaces and nanomaterials, photochromic–based luminescence/electronic devices and bulk materials together with light–regulated biological and bio–chemical systems. The authors conclude with a focus on current industrial applications and the future outlook for these materials.

Written with both senior researchers and entrants to the field in mind.

Contents:
List of Contributors XI

1 Introduction: Organic Photochromic Molecules 1
Keitaro Nakatani, Jonathan Piard, Pei Yu, and Rémi Métivier

1.1 Photochromic Systems 1
1.1.1 General Introduction 1
1.1.2 Basic Principles 4
1.1.3 Photochromic Molecules: Some History 5

1.2 Organic Photochromic Molecules: Main Families 8
1.2.1 Proton Transfer 9
1.2.2 Trans Cis Photoisomerization 12
1.2.3 Homolytic Cleavage 13
1.2.4 Cyclization Reaction 14
1.2.4.1 Spiropyans, Spirooxazines, and Chromenes 14
1.2.4.2 Fulgides and Fulgimides 17
1.2.4.3 Diarylethenes 18

1.3 Molecular Design to Improve the Performance 20
1.3.1 Figures of Merit 20
1.3.2 Fatigue Resistance: Increasing the Number of Operating Cycles 21
1.3.3 Bistability: Avoiding Unwanted Thermal Back–Reaction in the Dark 23
1.3.3.1 Influence of Ethenic Bridge on the Thermal Stability of the B Form 24
1.3.3.2 Impact of the Heteroaryl Substituents on the Thermal Stability of the B Form 24
1.3.4 Fast Photochromic Systems: Reverting Back Spontaneously to the Colorless State in a Glance 25

1.3.5 Gaining Efficiency of the Photoreaction: the Example of Diarylethenes 26

1.4 Conclusion 31

Irradiation at a Specific Wavelength: Isosbestic Point 32

Case A: When the Thermal Back–Reaction is Negligible Compared to the Photochemical Reaction (Typically P–type) 33

Case B: When the Thermal Back–Reaction is More Efficient than the Photochemical B A Reaction (Typically Type) 34

References 34

2 Photochromic Transitional Metal Complexes for Photosensitization 47
Chi–Chiu Ko and Vivian Wing–Wah Yam

2.1 Introduction 47

2.2 Photosensitization of Stilbene– and Azo–Containing Ligands 48

2.3 Photosensitization of Spirooxazine–Containing Ligands 51

2.4 Photosensitization of Diarylethene–Containing Ligands 54

2.5 Photosensitization of Photochromic N C–Chelate Organoboranes 63

2.6 Conclusion 65

References 66

3 Multi–addressable Photochromic Materials 71
Shangjun Chen, Wenlong Li, and Weihong Zhu

3.1 Molecular Logic Gates 71

3.1.1 Two–Input Logic Gates 71

3.1.2 Combinatorial Logic Systems 74

3.1.2.1 Half–Adder and Half–Subtractor 74

3.1.2.2 Keypad Locks 77

3.1.2.3 Digital Encoder and Decoder 82

3.2 Data Storage and Molecular Memory 84

3.2.1 Fluorescence Spectroscopy 85

3.2.2 Infrared Spectroscopy 90

3.2.3 Optical Rotation 92

3.3 Gated Photochromores 95

3.3.1 Hydrogen Bonding 95

3.3.2 Coordination 98
4 Photoswitchable Supramolecular Systems 109
Guanglei Lv, Liang Chen, Haichuang Lan, and Tao Yi

4.1 Introduction 109

4.2 Photoreversible Amphiphilic Systems 110
4.2.1 Photoreversible Diarylethene–Based Amphiphilic System 110
4.2.2 Photoreversible Azobenzene–Based Amphiphilic System 116
4.2.3 Photoreversible Spiropyran–Based Amphiphilic System 119

4.3 Photoswitchable Host Guest Systems 122
4.3.1 Photocontrolled Supramolecular Self–Assembly 123
4.3.2 Photocontrolled Capture and Release of Guest Molecules 128
4.3.3 Fluorescent Switching Promoted by Host Guest Interaction 133
4.3.4 Photoswitchable Molecular Devices 137

4.4 Photochromic Metal Complexes and Sensors 141
4.4.1 Metal Complexes with Azobenzene Groups 141
4.4.2 Metal Complexes with Diarylethene Groups 144
4.4.3 Metal Complexes with Spirocyclic Groups 150
4.4.4 Metal Complexes with Rhodamine 152

4.5 Other Light–Modulated Supramolecular Interactions 153

4.6 Conclusions and Outlook 159

References 159

5 Light–Gated Chemical Reactions and Catalytic Processes 167
Robert Göstl, Antti Senf, and Stefan Hecht

5.1 Introduction 167

5.2 General Design Considerations 169

5.3 Photoswitchable Stoichiometric Processes 171
5.3.1 Starting Material Control 172
5.3.2 Product Control 175
5.3.3 Starting Material and Product Control 177
5.3.4 Template Control 178

5.4 Photoswitchable Catalytic Processes 182
5.4.1 Activity Control 182
7.2 Tuning the Polaronic Transport in Organic Semiconductors by Means of Photochromic Molecules 251

7.2.1 Photochromic Molecules and Organic Semiconductors Incorporated in Dyads, Multiads, and Polymers 251

7.2.2 The Multilayer Approach 254

7.2.3 The Blending Approach 255

7.3 Photoresponsive Dielectric Interfaces and Bulk 262

7.4 Conclusions and Future Outlooks 267

Acknowledgments 268

References 268

8 Photochromic Bulk Materials 281
Masakazu Morimoto, Seiya Kobatake, Masahiro Irie, Hari Krishna Bisoyi, Quan Li, Sheng Wang, and He Tian

8.1 Photochromic Polymers 281

8.1.1 Glass Transition Temperature 281

8.1.2 Fluorescence 283

8.1.3 Conductivity 287

8.1.4 Living Radical Polymerization 288

8.1.5 Surface Relief Grating 290

8.1.6 Photomechanical Effect 290

8.2 Single–Crystalline Photoswitches 293

8.2.1 Crystalline–State Photochromic Materials 293

8.2.2 Photochromic Diarylethene Single Crystals 293

8.2.3 In situ X–ray Crystallographic Analysis of Photoisomerization Reaction 295

8.2.4 Photoisomerization Quantum Yields 296

8.2.5 Multicolor Photochromism of Multicomponent Crystals 297

8.2.6 Nanoperiodic Structures Fabricated by Photochromic Reactions 299

8.2.7 Photoinduced Shape Changes and Mechanical Performance 301

8.3 Photochromic Liquid Crystals 305

8.3.1 Introduction 305

8.3.2 Spiropyran– and Spirooxazine–Based Photochromic Liquid Crystals 309

8.3.3 Diarylethene–Based Photochromic Liquid Crystals 314

8.3.4 Azobenzene–Based Photochromic Liquid Crystals 320

8.3.5 Other Photochromic Liquid Crystals 327
9.4.3 Photoswitchable Ion Channels and Receptors 379

9.4.3.1 Photocontrol of Channel Activation and Desensitization with a Tethered Glutamate 380

9.4.3.2 Photocontrol of Insulin Release Using a Small Molecular Sulfonylurea 380

9.4.3.3 Photocontrol of Receptors Using Red Light 381

9.4.4 Photoswitchable Nucleotides 382

9.4.4.1 Spiropyran–Modified Oligonucleotide Backbones 382

9.4.4.2 Controlling RNA Duplex Hybridization with Light 384

9.4.4.3 Diarylethene–Modified Oligonucleotides 385

9.5 Summary 386

References 386

10 Industrial Applications and Perspectives 393

10.1 Industrialization and Commercialization of Organic Photochromic Materials 393

10.1.1 Commercialized T-type Photochromic Materials 395

10.1.2 Commercialized P-Type Photochromic Materials 398

10.2 Perspectives for Organic Photochromic Materials 399

References 409

Index 417

Ordering: Order Online - http://www.researchandmarkets.com/reports/3615628/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Photochromic Materials. Preparation, Properties and Applications
Web Address: http://www.researchandmarkets.com/reports/3615628/
Office Code: SCBROQLB

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): | USD 136 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World