
Description: Presents the Bayesian approach to statistical signal processing for a variety of useful model sets

This book aims to give readers a unified Bayesian treatment starting from the basics (Bayes rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on Sequential Bayesian Detection, a new section on Ensemble Kalman Filters as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to "fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical "sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theoretic metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems.

The second edition of Bayesian Signal Processing features:

- Classical Kalman filtering for linear, linearized, and nonlinear systems; modern unscented and ensemble Kalman filters; and the next-generation Bayesian particle filters
- Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems
- Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics
- New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving
- MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available
- Problem sets to test readers knowledge and help them put their new skills into practice

Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.

JAMES V. CANDY, PhD, is Chief Scientist for Engineering, a Distinguished Member of the Technical Staff, founder, and former director of the Center for Advanced Signal & Image Sciences at the Lawrence Livermore National Laboratory. He is also an Adjunct Full Professor at the University of California, Santa Barbara, a Fellow of the IEEE, and a Fellow of the Acoustical Society of America. Dr. Candy has published more than 225 journal articles, book chapters, and technical reports. He is also the author of Signal Processing: Model-Based Approach, Signal Processing: A Modern Approach, and Model-Based Signal Processing (Wiley 2006). Dr. Candy was awarded the IEEE Distinguished Technical Achievement Award for his development of model-based signal processing and the Acoustical Society of America Helmholtz-Rayleigh Interdisciplinary Silver Medal for his contributions to acoustical signal processing and underwater acoustics.

Contents: Preface to Second Edition xiii

References xiv

Preface to First Edition xvii

References xxiii
Acknowledgments xxvii
List of Abbreviations xxix
1 Introduction 1
1.1 Introduction 1
1.2 Bayesian Signal Processing 1
1.3 Simulation–Based Approach to Bayesian Processing 4
1.3.1 Bayesian Particle Filter 8
1.4 Bayesian Model–Based Signal Processing 9
1.5 Notation and Terminology 13
References 15
Problems 16
2 Bayesian Estimation 20
2.1 Introduction 20
2.2 Batch Bayesian Estimation 20
2.3 Batch Maximum Likelihood Estimation 23
2.3.1 Expectation Maximization Approach to Maximum Likelihood 27
2.3.2 EM for Exponential Family of Distributions 30
2.4 Batch Minimum Variance Estimation 34
2.5 Sequential Bayesian Estimation 37
2.5.1 Joint Posterior Estimation 41
2.5.2 Filtering Posterior Estimation 42
2.5.3 Likelihood Estimation 45
2.6 Summary 45
References 46
Problems 47
3 Simulation–Based Bayesian Methods 52
3.1 Introduction 52
3.2 Probability Density Function Estimation 54
3.3 Sampling Theory 58
3.3.1 Uniform Sampling Method 60
3.3.2 Rejection Sampling Method 64
3.4 Monte Carlo Approach 66
5.4 Linearized Bayesian Processor (Linearized Kalman Filter) 162
5.5 Extended Bayesian Processor (Extended Kalman Filter) 170
5.6 Iterated-Extended Bayesian Processor (Iterated-Extended Kalman Filter) 179
5.7 Practical Aspects of Classical Bayesian Processors 185
5.8 Case Study: RLC Circuit Problem 190
5.9 Summary 194
References 195
Problems 196

6 Modern Bayesian State Space Processors 201
6.1 Introduction 201
6.2 Sigma–Point (Unscented) Transformations 202
6.2.1 Statistical Linearization 202
6.2.2 Sigma–Point Approach 205
6.2.3 SPT for Gaussian Prior Distributions 210
6.3 Sigma–Point Bayesian Processor (Unscented Kalman Filter) 213
6.3.1 Extensions of the Sigma–Point Processor 222
6.4 Quadrature Bayesian Processors 223
6.5 Gaussian Sum (Mixture) Bayesian Processors 224
6.6 Case Study: 2D–Tracking Problem 228
6.7 Ensemble Bayesian Processors 234
6.8 Summary 245
References 247
Problems 249

7 Particle–Based Bayesian State Space Processors 253
7.1 Introduction 253
7.2 Bayesian State Space Particle Filters 253
7.3 Importance Proposal Distributions 258
7.3.1 Minimum Variance Importance Distribution 258
7.3.2 Transition Prior Importance Distribution 261
7.4 Resampling 262
7.4.1 Multinomial Resampling 267
7.4.2 Systematic Resampling 268
9.2 Hidden Markov Models 367

9.2.1 Discrete–Time Markov Chains 368

9.2.2 Hidden Markov Chains 369

9.3 Properties of the Hidden Markov Model 372

9.4 HMM Observation Probability: Evaluation Problem 373

9.5 State Estimation in HMM: The Viterbi Technique 376

9.5.1 Individual Hidden State Estimation 377

9.5.2 Entire Hidden State Sequence Estimation 380

9.6 Parameter Estimation in HMM: The EM/Baum–Welch Technique 384

9.6.1 Parameter Estimation with State Sequence Known 385

9.6.2 Parameter Estimation with State Sequence Unknown 387

9.7 Case Study: Time–Reversal Decoding 390

9.8 Summary 395

References 396

Problems 398

10 Sequential Bayesian Detection 401

10.1 Introduction 401

10.2 Binary Detection Problem 402

10.2.1 Classical Detection 403

10.2.2 Bayesian Detection 407

10.2.3 Composite Binary Detection 408

10.3 Decision Criteria 411

10.3.1 Probability–of–Error Criterion 411

10.3.2 Bayes Risk Criterion 412

10.3.3 Neyman–Pearson Criterion 414

10.3.4 Multiple (Batch) Measurements 416

10.3.5 Multichannel Measurements 418

10.3.6 Multiple Hypotheses 420

10.4 Performance Metrics 423

10.4.1 Receiver Operating Characteristic (ROC) Curves 424

10.5 Sequential Detection 440

10.5.1 Sequential Decision Theory 442
Ordering:

Order Online - http://www.researchandmarkets.com/reports/3616422/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Web Address: http://www.researchandmarkets.com/reports/3616422/
Office Code: SCBRPCRA

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): USD 128 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
 Research and Markets,
 Guinness Center,
 Taylors Lane,
 Dublin 8,
 Ireland.

☐ Pay by wire transfer: Please transfer funds to:
 Account number 833 130 83
 Sort code 98-53-30
 Swift code ULSBIE2D
 IBAN number IE78ULSB98533083313083
 Bank Address Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World