Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations.

The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features:

- Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types
- Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines
- Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay
- An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity
- An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration

Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes.

CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences.

YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics.

MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Contents:

- PREFACE xi
- ACKNOWLEDGMENTS xv
- 1 Introduction, Classification, Short History, Auxiliary Results, and Methods 1
- 1.1 Classical and New Types of FEs 2
1.2 Main Directions in the Study of FDE 4
1.3 Metric Spaces and Related Concepts 11
1.4 Functions Spaces 15
1.5 Some Nonlinear Auxiliary Tools 21
1.6 Further Types of FEs 25

2 Existence Theory for Functional Equations 37
2.1 Local Existence for Continuous or Measurable Solutions 38
2.2 Global Existence for Some Classes of Functional Differential Equations 43
2.3 Existence for a Second-Order Functional Differential Equation 50
2.4 The Comparison Method in Obtaining Global Existence Results 55
2.5 A Functional Differential Equation with Bounded Solutions on the Positive Semiaxis 59
2.6 An Existence Result for Functional Differential Equations with Retarded Argument 64
2.7 A Second Order Functional Differential Equation with Bounded Solutions on the Positive Semiaxis 68
2.8 A Global Existence Result for a Class of First-Order Functional Differential Equations 72
2.9 A Global Existence Result in a Special Function Space and a Positivity Result 76
2.10 Solution Sets for Causal Functional Differential Equations 81
2.11 An Application to Optimal Control Theory 87
2.12 Flow Invariance 92
2.13 Further Examples/Applications/Comments 95
2.14 Bibliographical Notes 98

3 Stability Theory of Functional Differential Equations 105
3.1 Some Preliminary Considerations and Definitions 106
3.2 Comparison Method in Stability Theory of Ordinary Differential Equations 111
3.3 Stability under Permanent Perturbations 115
3.4 Stability for Some Functional Differential Equations 126
3.5 Partial Stability 133
3.6 Stability and Partial Stability of Finite Delay Systems 139
3.7 Stability of Invariant Sets 147
3.8 Another Type of Stability 155
3.9 Vector and Matrix Liapunov Functions 160
3.10 A Functional Differential Equation 163
3.11 Brief Comments on the Start and Evolution of the Comparison Method in Stability 168
3.12 Bibliographical Notes 169

4 Oscillatory Motion, with Special Regard to the Almost Periodic Case 175
4.1 Trigonometric Polynomials and APr-Spaces 176
4.2 Some Properties of the Spaces APr(R,C) 183
4.3 APr-Solutions to Ordinary Differential Equations 190
4.4 APr-Solutions to Convolution Equations 196
4.5 Oscillatory Solutions Involving the Space B 202
4.6 Oscillatory Motions Described by Classical Almost Periodic Functions 207
4.7 Dynamical Systems and Almost Periodicity 217
4.8 Brief Comments on the Definition of APr(R,C) Spaces and Related Topics 221
4.9 Bibliographical Notes 224

5 Neutral Functional Differential Equations 231
5.1 Some Generalities and Examples Related to Neutral Functional Equations 232
5.2 Further Existence Results Concerning Neutral First-Order Equations 240
5.3 Some Auxiliary Results 243
5.4 A Case Study, I 248
5.5 Another Case Study, II 256
5.6 Second-Order Causal Neutral Functional Differential Equations, I 261
5.7 Second-Order Causal Neutral Functional Differential Equations, II 268
5.8 A Neutral Functional Equation with Convolution 276
5.9 Bibliographical Notes 278

Appendix A On the Third Stage of Fourier Analysis 281
A.1 Introduction 281
A.2 Reconstruction of Some Classical Spaces 282
A.3 Construction of Another Classical Space 288
A.4 Constructing Spaces of Oscillatory Functions: Examples and Methods 290
A.5 Construction of Another Space of Oscillatory Functions 295
A.6 Searching Functional Exponents for Generalized Fourier Series 297
A.7 Some Compactness Problems 304

BIBLIOGRAPHY 307
INDEX 341
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Web Address: http://www.researchandmarkets.com/reports/3617303/
Office Code: SCH3CCG9

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): UX 114 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: __________________________ Last Name: ______________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank,</td>
</tr>
<tr>
<td></td>
<td>27-35 Main Street,</td>
</tr>
<tr>
<td></td>
<td>Blackrock,</td>
</tr>
<tr>
<td></td>
<td>Co. Dublin,</td>
</tr>
<tr>
<td></td>
<td>Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World