Numerical Methods for Partial Differential Equations. An Introduction

Description: Numerical Methods for Partial Differential Equations: An Introduction

Vitoriano Ruas, Sorbonne Universités, UPMC – Université Paris 6, France

A comprehensive overview of techniques for the computational solution of PDE's

Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified.

Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDEs.

Key features:

A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment.

The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's.

Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use.

New techniques are employed to derive known results, thereby simplifying their proof.

Supplementary material is available from a companion website.

Contents:

Preface by Eugenio Ónate xi
Preface by Larisa Beilina xiii
Acknowledgements xv
About the Companion Website xvii
Introduction xix
Key Reminders on Linear Algebra xxvii
1 Getting Started in One Space Variable 1
1.1 A Model Two–point Boundary Value Problem 2
1.2 The Basic FDM 7
1.3 The Piecewise Linear FEM (P 1 FEM) 12
1.4 The Basic FVM 17
1.4.1 The Vertex–centred FVM 17
1.4.2 The Cell–centred FVM 20
1.4.3 Connections to the Other Methods 22
1.5 Handling Nonzero Boundary Conditions 24
1.6 Effective Resolution 25
1.6.1 Solving SLAEs for one–dimensional problems 26
1.6.2 Example 1.1: Numerical Experiments with the Cell–centred FVM 27
1.7 Exercises 28
2 Qualitative Reliability Analysis 30
2.1 Norms and Inner Products 31
2.1.1 Normed Vector Spaces 32
2.1.2 Inner Product Spaces 33
2.2 Stability of a Numerical Method 35
2.2.1 Stability in the Maximum Norm 35
2.2.2 Stability in the Mean–square Sense 39
2.3 Scheme Consistency 42
2.3.1 Consistency of the Three–point FD Scheme 42
2.3.2 Consistency of the P 1 FE Scheme 44
2.4 Convergence of the Discretisation Methods 48
2.4.1 Convergence of the Three–point FDM 49
2.4.2 Convergence of the P 1 FEM 50
2.4.3 Remarks on the Convergence of the FVM 52
2.4.4 Example 2.1: Sensitivity Study of Three Equivalent Methods 54
2.5 Exercises 59
3 Time–dependent Boundary Value Problems 61
3.1 Numerical Solution of the Heat Equation 64
3.1.1 Implicit Time Discretisation 65
3.1.2 Explicit Time Discretisation 66
3.1.3 Example 3.1: Numerical Behaviour of the Forward Euler Scheme 68
3.2 Numerical Solution of the Transport Equation 70
3.2.1 Natural Schemes 70
3.2.2 The Lax Scheme 72
3.2.3 Upwind Schemes 72
3.2.4 Extensions to the FVM and the FEM 73
3.3 Stability of the Numerical Models 76
3.3.1 Schemes for the Heat Equation 77
3.3.2 The Lax Scheme for the Transport Equation 79
3.4 Consistency and Convergence Results 81
3.4.1 Euler Schemes for the Heat Equation 81
3.4.2 Schemes for the Transport Equation 84
3.5 Complements on the Equation of the Vibrating String (VSE) 85
3.5.1 The Lax Scheme to Solve the VS First-order System 85
3.5.2 Example 3.2: Numerical Study of Schemes for the VS First-order System 86
3.5.3 A Natural Explicit Scheme for the VSE 87
3.6 Exercises 90
4 Methods for Two-dimensional Problems 92
4.1 The Poisson Equation 93
4.2 The Five-point FDM 95
4.2.1 Framework and Method Description 95
4.2.2 A Few Words on Possible Extensions 98
4.3 The P 1 FEM 100
4.3.1 Green's Identities 100
4.3.2 The Standard Galerkin Variational Formulation 103
4.3.3 Method Description 104
4.3.4 Implementation Aspects 110
4.3.5 The Master Element Technique 115
4.3.6 Application to Linear Elasticity 117
4.4 Basic FVM 121
4.4.1 The Vertex-centred FVM: Equivalence with the P 1 FEM 122
4.4.2 The Cell-centred FVM: Focus on Flux Computations 126
4.5 SLAE Resolution 138
4.5.1 Example 4.1: A Crout Solver for Banded Matrices 140
4.5.2 Example 4.2: Iterative Solution of Equivalent FD FE FV SLAEs 143
4.6 Exercises 147
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Numerical Methods for Partial Differential Equations. An Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3623321/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCH3CCLT</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

- Hard Copy (Hard Back): [] USD 98 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>___________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>___________________________</td>
</tr>
<tr>
<td>City:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>___________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World