Materials for Proton Exchange Membranes and Membrane Electrode Assemblies for PEM Fuel Cells

Description: This report provides:

- An overview of the global market for materials for proton exchange membranes and membrane electrode assemblies for PEM fuel cells.
- Examination of bipolar plates for PEMFCs, including direct methanol fuel cells (DMFCs); this includes the gas diffusion layer (GDL), the catalyst ink/electrode, the membrane itself, and the bipolar plate.
- Discussion covering the history and advancing technology of these components, the companies involved in these developments, the current and projected incentives, and the projected markets for such technologies.
- Presentations of consensus, optimistic, and pessimistic scenarios.
- Patent analysis as well as discussion covering power sources and vehicle components, emphasizing intellectual property issues.
- Comprehensive company profiles of major players in the field.

Highlights

- The global market for proton exchange membrane fuel cell (PEMFC) membrane electrode assemblies (MEA) reached $340 million and $460 million in 2010 and 2014, respectively. This market is expected to reach $534 million by 2015 and $1.9 billion by 2020, registering a compound annual growth rate (CAGR) of 29.4% from 2015 to 2020.
- Bipolar plates/collectors as a segment for this market will grow from $145 million in 2015 to $510 million in 2020 at a CAGR of 28.6% from 2015-2020.
- Membranes as a segment for this market will grow from $209 million in 2015 to $800 million in 2020 at a CAGR of 30.8% from 2015-2020.

Scope Of Report

The fuel cell industry in various forms has been developing for decades. There are notable examples of fuel cell successes. The PEMFC is emerging as a winner in many of the primary categories that fuel cells can satisfy. Existing membranes and assemblies still have room for improvement. PEMFC development and commercialization is an ever-changing process. This research analysis examines the market and technology for the materials and technology of proton exchange membranes and electrode assemblies and for bipolar plates for PEMFCs, including direct methanol fuel cells (DMFCs). This includes the gas diffusion layer (GDL), the catalyst ink or electrode, the membrane itself and the bipolar plate. Ancillary stack assembly materials such as bolts, gaskets, tie-outs, and final assembly and packaging costs are excluded. This report details the actuals for 2010 and 2014, forecasts for 2015, and compound annual growth rate (CAGR) projections for 2020. When appropriate, consensus, optimistic and pessimistic scenarios are presented. A patent analysis and discussion of power sources and vehicle components describes where research is performed and emphasizes intellectual property issues. An extensive set of company profiles is provided.

Methodology

An in-depth analysis of technical and business literature and published dissertations, a review of the history of the technologies involved, interviews with industry experts, company representatives, federal government researchers and university scientists provide an assessment of the outlook for the next generation of PEMFCs and membrane electrode assemblies. Other information sources include product literature from suppliers, scientific references, conferences and patent searches. Both primary and secondary research methodologies were used in preparing this report, which is based on interviews with commercial and government sources, literature reviews and patent examinations. Throughout the report, past market data is expressed in current U.S. dollars, and estimates and projections are in constant 2015 U.S. dollars. Most market summaries are based on a consensus scenario for wholesale (producer) prices that assumes no unanticipated technical advances and no unexpected legislation. When appropriate, pessimistic, consensus and optimistic market scenarios characterize several developmental markets. Totals are rounded to the
nearest million dollars. When appropriate, information from previously published sources is identified to allow a more detailed examination by clients.

Contents:

Chapter 1

- Introduction
- Study Goals And Objectives Reasons For Doing The Study

Chapter 2

- Summary
- Summary Summary Table Global PEMFC MEA Market, Through 2020 ($ Millions)
- Summary Figure Global PEMFC MEA Market, 2010-2015 ($ Millions)

Chapter 3

- Proton Exchange Membrane Fuel Cell Overview
- Fuel Cell Technology
- Proton Exchange Membrane Fuel Cell Fundamentals
- Fuel And Fuel Reforming Fundamentals Improved Hydrogen Separation Filtering Hydrogen And Oxygen
- The Direct Methanol Fuel Cell Variation
- Figure 2 Dmfc Chemistry Proton Exchange Membrane Fuel Cell Companies
- Proton Exchange Membrane Fuel Cell Market Drivers Market Segmentation And Industry Concentration Portable Market Sector Market Drivers And Market Factors
- Stationary Market Sector Market Drivers And Market Factors Uninterruptible Power Supplies Combined Heat And Power Utility Load Leveling Stationary Market Drivers
- Transportation Market Sector Market Drivers And Market Factors
- "Other" Market Sector Market Drivers And Market Factors
- Portable Military Products
- Recreational Vehicles Anti-Idling Power Other Market Drivers
- Global PEMFC Market Forecasts
- Optimistic And Pessimistic Scenarios Pessimistic Scenarios: Optimistic Scenarios:

Chapter 4

- Membrane Electrode Assemblies
- Membrane Electrode Assembly Fundamentals
- MEA Objectives
- MEA Fabrication And Assembly
- Membrane Electrode Assembly Functional Stack Designs Electrochemistry Water Management Ancillary Factors Membrane Electrode Assembly Development Approaches
- Carbon Corrosion And Graphite
- Global MEA Component For Pemfcs Market Structure And Forecast
- Membrane Electrode Assembly Market Structure
- Bipolar Plate Market Structure Gas Diffusion Layers And Carbon Market Structure Ink And Catalyst Market Structure Putting It All Together: MEA Market Forecast
- Proton Exchange Membranes For Fuel Cells Membrane Background
- Types Of Membranes Membrane Processes Proton Exchange Membrane Fuel Cell Membranes
- What Makes A Good PEMFC Membrane? Proton Exchange Membrane Functional Factors
- High-Temperature Tolerance
- Membrane Water Tolerance Factors
- Fuel Tolerance Factors Fuel Cell Membrane Structure
- Membrane Fabrication And Synthesis
- Common Membrane Fabrication Techniques Phase Separation Expanded Film Leaching Interfacial Polymerization Grafting
- Casting Solvent Ethylene Glycol As Solvent
- Impact Of Membrane Thickness Membrane Functionalization
- Membrane Pretreatment Membrane Material Compositions
- Pem Membranes Perfluorocarbonsulfonic Acid Ionomers Nafion Pfsa Membranes
- Department Of Chemical Engineering Polymer Membrane
- University Of Rochester Thin Filter And Simpore Membranes
- Polyfuel Hydrocarbon Membranes Mit And The University Of Pennsylvania Nanocomposite Membrane Barriers
- Victrex Polyether Ether Ketone (peek) Membranes Hoku Scientific Sek Membranes Shimizu And University Of Calgary Membranes
- Tosoh’s Poly(Arylene Ether Sulfone) Membranes Virginia Polytechnic Institute Sulfonated Poly(Arylene Ether) Sulfone Membrane
- Argonne National Lab dendritic Sulfonated Polymethyl Ether Membranes
- Tianjin University Chemical Engineering Polystyrene Sulfonic Acid/Polystyrene Blend Membranes
- Gas Technology Institute Membranes
- 3M Sulfonated Perfluorocyclobutane Membranes Motorola Heterocyclic And Polybenimidizole Membranes University Of Texas And Other Variations Of Pbi Membranes Plug Power And DoE And PBI Membranes Rensselaer’s Chain-Transfer (Raft) Polymerized Membranes Samsung Polymide Derivative Other Modifications Of PBI Cea Sulfonated Polyimide Membranes Lawrence Berkeley National Laboratory Tailored Imide Membranes Poly(bisbenzoxazol) [Pbo] Membranes University Of Massachusetts Co-Polymer Membranes Aciplex And Titanias Composite Membranes Various Inorganic-organic Composite Membranes Glen Research Center Modified Siloxane (Ormosil) Membranes Illinois Institute Of Technology Organic/heteropolymers And Nafion Membranes
- Honda Aniline And Perfluorosulfonic Acid Polymer Membranes Johnson Matthey Randomly Arranged Fibers And Perfluorinated Membranes
- McMaster University Ionic Gel Fill Membranes Zirconium Phosphonate Fill National Science Foundation Oxidation Resistant Carbon Support Membranes
- Altergy Freedom Power Novel And Experimental Pem Materials
- Georgia Tech Triazole Booster Dow Xus 13204.1 3M Acid Functional Fluoropolymers Membrane Glass Membranes Microcell Microfiber Oak Ridge National Lab Metallized Bio-cellulosics University Of Florida Intermediate-Temperature Proton-Conducting Membranes
- Membranes
- Membrane Companies
- Asahi Glass Co. Ltd.
- Asahi Kasei Chemicals Corp.
- Axane
- Ballard Power Systems
- Basf Corp.
- Cambridge Display (maxdem Inc.)
- Dais Analytic Corp.
- DuPont Fuel Cells
- Golden Energy Fuel Cell Co. Ltd.
- Gore Fuel Cell Technologies
- Hoku Scientific Inc.
- Hydrogencs Corp.
- Infintium Fuel Cell Systems
- Itm Power Jsr Corp.
- Toray Industries Inc.
- Others
- Global PEMFC Membrane Market Structure And Forecast Pem Membrane Materials Market Share

Chapter 5

- MEA, Gaseous Diffusion Layers And Bipolar Plates
- Gaseous Diffusion Layers Gaseous Diffusion Layer Background Attributes Of Gas Diffusion Layers Rensselaer Polytechnic Institute Approach Zoltek Approach Cabot And Ird Fuel Cell Approach Other
Approaches
- Bipolar Plates
- Bipolar Plate Background Bipolar Plate Designs
- Corrosion Protection Of Metallic Plates Ballard Powers' Bipolar Metal Plate Surface Modification
- Tech-Etch Metal Plates Entegris Approach Dupont T8 Series Idatech Layered Bipolar Plate Assembly
- Celanese Ticona Thermoplastic Intelligent Energy's Proprietary Design Lawrence Berkeley National Laboratory Battery Material And Component Simulations
- Nisshinbo Approach Illinois Urbana-Champaign Fuel Cell Separator Plate With Controlled Fiber Orientation
- Plug Power Assembly Porvair Approach Sgl Group Approach
- Dmfc Anode Approaches Toshiba Approach Dupont Gen Iv Approach Medis Conductive Polymer Approach
- Polyfuel Approach Smart Fuel Cell Approach
- MEA, Gdl And Bipolar Plate Companies 10X Microstructures 3M Acal Energy Ltd Asbury Carbons
- Automotive Fuel Cell Cooperation Corp. Avcarb Ballard Power Systems Daimler
- Dupont Fuel Cell Electrochem Inc. (Fuelcell.Com)
- Entegris Inc.
- Fuelcellsetc General Motors Corp.
- Gore Fuel Cell Technologies
- Graftech International Ltd.
- Hydrogenics Corp. Honda
- Honda U.S. Headquarters
- Horizon Fuel Cells
- Imerys Graphite & Carbon Metro Mold & Design Johnson Matthey Fuel Cells Research
- Johnson Matthey Fuel Cells (Usa)
- Manhattan Scientifics Inc.
- Research Headquarters
- Materials And Electrochemical Research Corp.
- Mitsubishi Rayon Co. Ltd.
- Nedstack Fuel Cell Technology
- Nisshinbo Industries Inc.
- Nuvera Fuel Cells (Nacco Materials Handling Group)
- Oorja Protonics Inc.
- Palcan Fuel Cells Ltd.
- Paxitech Plug Power
- Porvair Fuel Cell Technology
- Powercell Sweden Ab (Volvo)
- Proton Power Systems Protonex Technology Corp.
- Sgl Group
- Sgl Technik
- Shanghai Shenli High Tech Co. Ltd.
- Sharp Corp. Smart Fuel Cell Ag (Sfc)
- Spectracorp
- Sumitomo Metal Mining
- Superior Graphite Co.
- Ticona (Celanese)
- Toray Industries Inc. (Zoltek Materials Group)
- Zoltek Materials Group Toyota
- Global Bipolar Plates And Gdls For Pemfcs Structure Forecast

Chapter 6
- Catalysts And Inks Background
- Catalyst Durability Catalyst Particle Size And Carrier Compositions Catalyst-Coated Membranes
- Dupont Approach Gs Carbon Approach
- Low Catalyst Loading Approaches Ballard Approach
- Combinatorial Catalyst Techniques Innovative Catalyst Materials And Nanomaterials
- Platinum Alloys D
- Mfc Anode Durability Nanoparticles
- Kyoto University Approach
- Hong Kong University Of Science And Technology Approach
- Ucla Approach
- Nist Nano-Raspberry Approach
- Los Alamos National Laboratory And Brookhaven National Laboratory Approach
- Brown University Approach Brookhaven National Laboratory Approaches
- University Of Central Florida Approach
- Cornell University Approach
- Georgia Tech And Xiamen University Approach
- Mit Approach
- Nanofibers Nanolevel Platinum/Carbon Electrocatalyst For Cathode Delhi Technological University
- Graphite/Ptfe Based Electrode Approach
- University Of Wisconsin-Madison Nanoparticle Catalyst
- University Of Houston Lattice-Strained Core-Shell Nanoparticle Catalyst
- Acta Base Metal Cathode Catalyst Lawrence Berkeley And Argonne National Laboratories Alloy Nanowires
- Lawrence Berkeley National Laboratories Approach University Of Rochester Sizing Nanowire Approach
- Jet Propulsion Laboratory Nanophase Nickel-Zirconium Alloy Approach
- University Of Texas At Austin Palladium-Based Alloy Catalysts
- Tiac Llc Nanostructured Thin-Film Catalysts
- Sdk High-Efficiency Catalysts Platinum Substitute For Pemfc Washington University In St. Louis And Brookhaven National Labs
- Bimetallic Fuel Cell Catalyst
- Brown University Platinum Nanocubes Johnson Matthey Fuel Cells Neclass Project Center For Molecular
- Electrocatalysis Approach University Of Rochester Black Metal Approach Canadelectrochem Approach
- Transition Metal Nanosized Catalysts Texas Tech University Platinum Nanodots
- Catalyst Ink Compositions Applied Research And Development Israel Approach California Institute Of
- Technology Sw Research And Gore Approach Utc Fuel Cells Approach Jet Propulsion Laboratory Approach
- Angstrom Materials Graphene-Based Approach Northwestern University And The Mccormick School Of
- Engineering And Applied Science Graphene Films Approach
- Samsung Electronics Approach Carbon Composite Electrocatalyst Powders
- Cabot Approach Toyota Nanometer-Sized Platinum Particle Observation Asymtek Jet Dispensing Approach
- Catalyst And Ink Companies Acta Spa Alfa Aesar-Johnson Matthey Co.
- Johnson Matthey Co. Johnson Matthey Fuel Cells
- Anglo Platinum Aquarius Platinum Pty Ltd. Asymtek (Nordson) Impala Platinum Holding Ltd. (Implats)
- Impala Platinum Holding (Implats) (U.K.) Lonmin Platinum, Plc
- Lonmin South Africa Norilsk Nickel Om Group Inc. (Omg) QuantumSphere Inc. Stillwater Tanaka Precious
- Metals
- Global Pemfc Catalyst And Ink Structure And Forecast Platinum Markets And Consumption

Chapter 7

- Industry Structure And Competitive Aspects Industry Environment And Trade Practices
- Figure 16 Quality Control Flow Sheet For Selecting A Proper MEA Environmental Issues Government
- Regulations And Subsidies
- Cell Subsidies U.S. Doe Direct PEMFC Funding
- Topic 1: Alternative Electrode Deposition Processes
- Topic 2: Novel MEA Manufacturing
- Topic 3: Rapid MEA Conditioning
- Topic 4: Process Modeling For Fuel Cell Stacks
- Topic 5: Process And Device For Cost-Effective Testing Of Cell Stacks
- Other U.S. Fuel Cell Subsidies And Incentives Office Of Science Fuel Cell And Hydrogen Energy Association
- National Science Foundation Department Of Defense State Incentives Neesc Pilot Program To Assist
- Hydrogen-Fuel Cell And Energy Storage Entrepreneurs
- Federal Excise Tax Exemption For Anti-Idling Global Subsidies And Incentives
- Canadian Subsidies And Incentives
- European Subsidies And Incentives Japanese Subsidies And Incentives South Korean Subsidies And
- Incentives
- Academic Institutions' Involvement In Fuel Cell Development
- Table 61 Major Institutional Research Into Pemfc
- MEA Distribution Channels Industry Purchasing Influences And Prices
- Table 62 Pgm Prices By Year, 2008-2014 (Dollars Per Tr Oz) Life-Cycle Costs
- PEMFC And MEA Patents

List Of Tables

Summary Table Global PEMFC MEA Market, Through 2020 ($ Millions)

- Table 1 Fuel Cell Comparison
List Of Figures
Summary Figure Global PEMFC MEA Market, 2010-2015 ($ Millions)

- Figure 1 Generic PEMFC Diagram With Components
- Figure 2 DMFC Chemistry
- Figure 3 Global PEMFC Market By Application, 2010-2020 ($ Millions)
- Figure 4 Total Global PEMFC Market By Application, 2010-2020 ($ Millions)
- Figure 5 Simple MEA Schematic
- Figure 6 MEA Creation Flow Chart
- Figure 7 Global MEA Market Share By Component, 2015 (%)
- Figure 8 Water Transport In A PEMFC
- Figure 9 Simpore Membranes
- Figure 10 Global Proton Exchange Membranes For PEMFCs By Type, 2010-2020 ($ Millions)
- Figure 11 Global Market Shares Of Proton Exchange Membranes For PEMFCs By Type, 2015 (%)
- Figure 12 Global PEMFC Bipolar Plate And Carbon Market By Component Type, 2010-2020 ($ Millions)
- Figure 13 Global Market Share Of PEMFC Bipolar Plate And Carbon By Component Type, 2015 (%)
- Figure 14 Preparation Of Carbon Aerogel Supported Platinum
- Figure 15 Global PEMFC Catalyst And Ink Market, 2010-2020 ($ Millions)
- Figure 16 Quality Control Flow Sheet For Selecting A Proper MEA

Ordering:

Order Online - http://www.researchandmarkets.com/reports/3634299/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Materials for Proton Exchange Membranes and Membrane Electrode Assemblies for PEM Fuel Cells
Web Address: http://www.researchandmarkets.com/reports/3634299/
Office Code: SCBRZ4XN

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 6650</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 5 Users</td>
<td></td>
<td>USD 8500</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World