The Global Market for Nanocoatings

Description: In the last decade, considerable efforts have been made to develop ultra-high performance nanocoatings. Novel nanomaterials are leading to new and multi-functionalities in coatings for packaging, barrier films, electronics, printing and medical devices. Nanocoatings are providing cost-effective solutions in industries with demanding applications and performance requirements such as oil and gas, automotive, aerospace, photovoltaics, power generation, shipping and transportation. Nanocoatings offer vastly improved optical, magnetic, electronic, catalytic, mechanical, chemical, and tribological functionalities.

Nanomaterials are allowing companies to meet changing global trends in the industry such as demand for multi-functional, decorative/aesthetically enhanced and service free or low maintenance coatings with enhanced protection and longer operation life. Environmental sustainability is also an important factor across most coatings markets.

The key element that nanocoatings provide is protection-from ice, pollutants, UV, fire, heat, bacteria, marine life, touch and corrosion. These factors cost global industry billions in maintenance, loss and downtime each year and can pose a significant public health hazard.

In the coating sector, high transparency, water proofing, oxygen barrier function and enhanced protection against corrosion, heat, ice etc. are increasingly important requirements and have been driving the adoption of nanocoatings. The incorporation of nanomaterials into thin films, coatings and surfaces leads to new functionalities, completely innovative characteristics and the possibility to achieve multi-functional coatings and smart coatings. The use of nanomaterials also results in performance enhancements in wear, corrosion-wear, fatigue and corrosion resistant coatings. Nanocoatings demonstrate significant enhancement in outdoor durability and vastly improved hardness and flexibility compared to traditional coatings.

Industries affected include:

Oil and gas
- Corrosion and scaling chemical inhibitors.
- Self-healing coatings.
- Smart coatings.
- Coatings for hydraulic fracturing.

Aerospace & aviation
- Shape memory coatings.
- Corrosion resistant coatings for aircraft parts.
- Thermal protection.
- Novel functional coatings for prevention of ice-accretion and insect-contamination.

Renewable energy
- Anti-fouling protective coatings for offshore marine structures.
- Anti-reflective solar module coatings.
- Ice-phobic wind turbines.
- Coatings for solar heating and cooling.

Automotive
- Anti-fogging nanocoatings and surface treatments.
- Improved mar and scratch resistance.
- Flexible glass.
- Corrosion prevention.
- Multi-functional glazing.
- Smart surfaces.
- Surface texturing technologies with enhanced gloss.
- New decorative and optical films.
- Self-healing.

Textiles & Apparel
- Sustainable coatings.
- High UV protection.
- Smart textiles.
- Electrically conductive textiles.
- Enhanced durability and protection.
- Anti-bacterial and self-cleaning.
- Water repellent while maintaining breathability

Medical
- Hydrophilic lubricious, hemocompatible, and drug delivery coatings.
- Anti-bacterial coatings to prevent bacterial adhesion and biofilm formation.
- Hydrophobic and super-hydrophobic coatings.
- Lubricant coatings.
- Protective implant coatings.
- High hardness coatings for medical implants.
- Infection control.
- Antimicrobial protection or biocidic activity.

Marine
- Anti-fouling and corrosion control coatings systems.
- Reduced friction coatings.
- Underwater hull coatings.

Buildings
- Thermochromic smart windows.
- Anti-reflection glazing.
- Self-cleaning surfaces.
- Passive cooling surfaces.
- Air-purifying.

Consumer electronics
- Waterproof electronic devices.
- Anti-fingerprint touchscreens.

Contents:

1 Research Methodology
2 Executive Summary
2.1 Market drivers and trends
2.1.1 New functionalities.
2.1.2 Need for more effective protection.
2.1.3 Cost of weather-related damage
2.1.4 Cost of corrosion
2.1.5 Need for improved hygiene.
2.1.6 Increased demand for coatings for extreme environments.
2.1.7 Sustainable coating systems and materials
2.1.7.1 VOC and odour reduction
2.1.7.2 Chemical to bio-based.
2.2 Market size and opportunity.
2.2.1 Main markets.
2.2.2 Regional demand
2.3 Market and technical challenges
2.3.1 Durability
2.3.2 Dispersion
2.3.3 Cost

3 Introduction
3.1 Properties of nanomaterials
3.2 Categorization
3.3 Nanocoatings.
 3.3.1 Properties
 3.3.2 Benefits of using nanocoatings
 3.3.3 Types
 3.3.4 Main production and synthesis methods.
 3.3.4.1 Electrospray and electrospinning
 3.3.4.2 Chemical vapor deposition (CVD).
 3.3.4.3 Physical vapor deposition (PVD)
 3.3.4.4 Atomic layer deposition (ALD)
 3.3.4.5 Aerosol coating
 3.3.4.6 Self-assembly.
 3.3.4.7 Sol-gel

4 Nanomaterials Used In Coatings
4.1 Graphene
 4.1.1 Properties and applications.
 4.1.1.1 Anti-corrosion coatings
 4.1.1.2 Anti-microbial
 4.1.1.3 Anti-icing.
 4.1.1.4 Barrier coatings
 4.1.1.5 Heat protection
 4.1.1.6 Smart windows
4.2 Carbon Nanotubes
 4.2.1 Properties and applications
 4.2.1.1 Conductive films
 4.2.1.2 EMI shielding
 4.2.1.3 Anti-fouling
 4.2.1.4 Flame retardant
4.3 Silicon Dioxide/Silica Nanoparticles
 4.3.1 Properties and applications
 4.3.1.1 Easy-clean and dirt repellent
 4.3.1.2 Anti-fogging
 4.3.1.3 Scratch and wear resistant
 4.3.1.4 Anti-reflection
4.4 NANO SILVER
 4.4.1 Properties and applications
 4.4.1.1 Anti-microbial
 4.4.1.2 Electrical conductivity.
 4.4.1.3 Anti-reflection
4.5 Titanium Dioxide Nanoparticles
 4.5.1 Properties and applications
 4.5.1.1 Glass coatings
 4.5.1.2 Interior coatings
 4.5.1.3 Improving indoor air quality.
 4.5.1.4 Waste Water Treatment
 4.5.1.5 UV protection coatings
4.6 Aluminium Oxide Nanoparticles
 4.6.1 Properties and applications
 4.6.1.1 Scratch and wear resistant
4.7 Zinc Oxide Nanoparticles
 4.7.1 Properties and applications
 4.7.1.1 UV protection
 4.7.1.2 Anti-bacterial
4.8 Dendrimers
 4.8.1 Properties and applications
4.9 Nanocelulose
 4.9.1 Properties and applications
 4.9.1.1 Abrasion and scratch resistance
4.9.1.2 UV-resistant
4.9.1.3 Superhydrophobic coatings
4.9.1.4 Gas barriers.
4.10 Nanoclays
4.10.1 Properties and applications
4.10.1.1 Barrier films

5 Nanocoatings Market Structure

6 Nanocoatings Regulations
6.1 Europe
6.1.1 Biocidal Products Regulation
6.1.2 Cosmetics regulation
6.1.3 Food safety
6.2 United States
6.3 Asia

7 Market Segment Analysis, By Coatings Type
7.1 Anti-Fingerprint Nanocoatings
7.1.1 Market drivers and trends
7.1.1.1 Huge increase in touch panel usage.
7.1.1.2 Increase in the demand for mar-free decorative surfaces
7.1.1.3 Increase in the use of touch-based automotive applications
7.1.2 Benefits of nanocoatings.
7.1.3 Markets and applications
7.1.4 Market size and opportunity.
7.1.5 Companies
7.2 Anti-Microbial Nanocoatings
7.2.1 Market drivers and trends
7.2.1.1 Need for improved anti-microbial formulations
7.2.1.2 Rise in bacterial infections.
7.2.1.3 Growing problem of microbial resistance
7.2.1.4 Growth in the bio-compatible implants market.
7.2.1.5 Anti-microbial packaging biofilm market is growing
7.2.1.6 Need for improved water filtration technology
7.2.1.7 Proliferation of touch panels
7.2.1.8 Growth in the market for anti-microbial textiles
7.2.2 Benefits of nanocoatings.
7.2.3 Markets and applications
7.2.4 Market size and opportunity.
7.2.5 Companies
7.3 Anti-Corrosion Nanocoatings
7.4 Market drivers and trends
7.4.1 Reduce the use of toxic and hazardous substances.
7.4.2 Reducing VOC from anti-corrosion coatings
7.4.3 Cost of corrosion
7.4.4 Need for environmentally friendly, anti-corrosion marine coatings
7.4.5 Corrosive environments in Oil & gas exploration
7.4.6 Cost of corrosion damage for Military equipment
7.4.7 Problems with corrosion on offshore Wind turbines
7.4.7.1 Automotive protection
7.4.8 Benefits of nanocoatings.
7.4.9 Markets and applications
7.4.10 Market size and opportunity.
7.4.11 Companies
7.5 Abrasion & Wear-Resistant Nanocoatings
7.5.1 Market drivers and trends
7.5.1.1 Machining tools
7.5.1.2 Cost of abrasion damage.
7.5.1.3 Regulatory and safety requirements
7.5.2 Benefits of nanocoatings.
7.5.3 Markets and applications
7.5.4 Market size and opportunity.
7.5.5 Companies

7.6 Barrier Nanocoatings
7.6.1 Market drivers and trends
7.6.1.1 Need for improved barrier packaging
7.6.1.2 Sustainable packaging solutions
7.6.1.3 Need for efficient moisture and oxygen protection in flexible and organic electronics
7.6.2 Benefits of nanocoatings.
7.6.2.1 Increased shelf life
7.6.2.2 Moisture protection
7.6.3 Markets and applications
7.6.4 Market size and opportunity.
7.6.5 Companies

7.7 Anti-Fouling And Easy-To-Clean Nanocoatings
7.7.1 Market drivers and trends
7.7.1.1 Increased durability and cleanability of exterior and interior surfaces
7.7.1.2 Cost of Marine biofouling
7.7.1.3 Reducing costs and improving hygiene in food processing
7.7.1.4 Cost of graffiti damage
7.7.2 Benefits of nanocoatings.
7.7.3 Markets and applications
7.7.4 Market size and opportunity.
7.7.5 Companies

7.8 Self-Cleaning (Bionic) Nanocoatings
7.8.1 Market drivers and trends
7.8.1.1 Durability
7.8.1.2 Minimize cleaning
7.8.2 Benefits of nanocoatings.
7.8.3 Markets and applications
7.8.4 Market size and opportunity.
7.8.5 Companies

7.9 Self-Cleaning (Photocatalytic) Nanocoatings
7.9.1 Market drivers and trends
7.9.1.1 Combating infection and spread of microorganisms
7.9.1.2 Reducing building maintenance.
7.9.1.3 Reducing indoor air pollution and bacteria.
7.9.2 Benefits of nanocoatings.
7.9.3 Markets and applications
7.9.3.1 Self-Cleaning Coatings
7.9.3.2 Indoor Air Pollution and Sick Building Syndrome.
7.9.3.3 Outdoor Air Pollution.
7.9.3.4 Water Treatment
7.9.4 Market size and opportunity.
7.9.5 Companies

7.10 Uv-Resistant Nanocoatings
7.10.1 Market drivers and trends
7.10.1.1 Increased demand for non-chemical UVAB filters
7.10.1.2 Environmental sustainability
7.10.1.3 Need for enhanced UV-absorbers for exterior coatings.
7.10.2 Benefits of nanocoatings.
7.10.2.1 Textiles
7.10.2.2 Wood coatings.
7.10.3 Markets and applications
7.10.4 Market size and opportunity.
7.10.5 Companies

7.11 Thermal Barrier And Flame Retardant Nanocoatings
7.11.1 Market Drivers and trends
7.11.1.1 Extreme conditions and environments.
7.11.1.2 Flame retardants.
7.11.2 Benefits of nanocoatings.
7.11.3 Markets and applications
7.11.4 Market size and opportunity.
7.11.5 Companies

7.12 Anti-Icing
7.1.12.1 Market drivers and trends
7.1.12.1.1 Inefficiency of current anti-icing solutions
7.1.12.1.2 Costs of damage caused by icing of surfaces.
7.1.12.1.3 Need for new aviation solutions
7.1.12.1.4 Oil and gas exploration
7.1.12.1.5 Wind turbines.
7.1.12.1.6 Marine
7.1.12.2 Benefits of nanocoatings.
7.1.12.3 Markets and applications
7.1.12.4 Market size and opportunity.
7.1.12.5 Companies
7.13 Anti-Reflective Nanocoatings
7.13.1 Market drivers and trends
7.13.1.1 Growth in the optical and optoelectronic devices market
7.13.1.2 Improved performance and cost over traditional AR coatings
7.13.1.3 Growth in the solar energy market
7.13.2 Benefits of nanocoatings.
7.13.3 Markets and applications
7.13.4 Market size and opportunity.
7.13.5 Companies
7.14 Other Nanocoatings Types
7.14.1 Self-healing
7.14.1.1 Markets and applications
7.14.1.2 Companies.
7.14.2 Thermochromic

8 Market Segment Analysis, By End User Market
8.1 Revenues 2010-2025
8.2 Electronics
8.2.1 Market drivers and trends
8.2.1.1 Waterproofing and permeability
8.2.1.2 Improved aesthetics and reduced maintenance.
8.2.1.3 Wearable electronics market growing
8.2.1.4 Electronics packaging.
8.2.2 Applications.
8.2.2.1 Waterproof coatings.
8.2.2.2 Conductive films
8.2.3 Market size and opportunity.
8.2.4 Companies
8.3 Aerospace
8.3.1 Market drivers and trends
8.3.1.1 Improved performance
8.3.1.2 Improved safety
8.3.1.3 Increased durability
8.3.1.4 Improved aesthetics and functionality.
8.3.1.5 Reduced maintenance costs.
8.3.2 Applications.
8.3.2.1 Thermal barrier
8.3.2.2 De-icing.
8.3.2.3 Conductive and anti-static.
8.3.2.4 Anti-corrosion.
8.3.3 Market size and opportunity.
8.3.4 Companies
8.4 Packaging
8.4.1 Market drivers and trends
8.4.1.1 Environmental concerns.
8.4.1.2 Active packaging
8.4.1.3 Improved barrier
8.4.2 Applications.
8.4.2.1 Nanoclays
8.4.2.2 Nanosilver.
8.4.2.3 Nanocellulose
8.4.3 Market size and opportunity.
8.4.4 Companies
8.5 Automotive
8.5.1 Market drivers and trends
8.5.1.1 Regulation
8.5.1.2 Safety
8.5.1.3 Aesthetics
8.5.1.4 Surface protection
8.5.1.5 Increase in the use of touch-based automotive displays
8.5.2 Applications
8.5.3 Market size and opportunity
8.5.4 Companies
8.6 Medical & Healthcare
8.6.1 Market drivers and trends
8.6.1.1 Need for reduced biofouling and improve biocompatibility of medical implants
8.6.1.2 Need for improved hygiene and anti-infection on materials and surfaces
8.6.1.3 Need to reduce bacterial infection in wound care.
8.6.2 Applications.
8.6.3 Market size and opportunity.
8.6.4 Companies
8.7 Textiles And Apparel
8.7.1 Market drivers and trends
8.7.1.1 Growth in the market for anti-microbial textiles
8.7.1.2 Need to improve the properties of cloth or fabric materials
8.7.1.3 Environmental and regulatory
8.7.1.4 Increase in demand UV protection textiles and apparel.
8.7.2 Applications.
8.7.3 Market size and opportunity.
8.7.4 Companies
8.8 Military And Defence
8.8.1 Market drivers and trends
8.8.1.1 Cost of corrosion
8.8.1.2 Exposure to harsh environments
8.8.1.3 Threat detection and prevention.
8.8.2 Applications.
8.8.3 Market size and opportunity.
8.8.4 Companies
8.9 Household Care, Sanitary And Indoor Air Quality
8.9.1 Market drivers and trends
8.9.1.1 Food safety on surfaces
8.9.1.2 Reducing cleaning cycles.
8.9.2 Applications
8.9.2.1 Self-cleaning and easy-to-clean
8.9.2.2 Food preparation and processing
8.9.2.3 Indoor pollutants and air quality
8.9.3 Market size and opportunity.
8.9.4 Companies
8.10 Marine
8.10.1 Market drivers and trends
8.10.1.1 Need to reduce biofouling
8.10.1.2 Reducing fuel consumption and costs.
8.10.1.3 Reducing pollution and environmental protection.
8.10.1.4 Durability
8.10.2 Applications
8.10.3 Market size and opportunity.
8.10.4 Companies
8.11 Construction, Architecture And Exterior Protection
8.11.1 Market drivers and trends
8.11.1.1 Reduced maintenance and cost
8.11.1.2 Increased protection
8.11.1.3 Environmental regulations
8.11.2 Applications
8.11.2.1 Photocatalytic nano-TiO2 coatings
8.11.2.2 Anti-graffiti
8.11.2.3 UV-protection
8.11.3 Market size and opportunity.
8.11.4 Companies
8.12 Renewable Energy
8.12.1 Market drivers and trends
8.12.1.1 Wind turbine protection.
8.12.1.2 Solar panel protection
8.12.2 Applications
8.12.2.1 Wind energy
8.12.2.2 Solar
8.12.3 Market size and opportunity
8.12.4 Companies
8.13 Oil And Gas Exploration
8.13.1 Market drivers and trends
8.13.1.1 Cost
8.13.1.2 Increased demands of drilling environments
8.13.1.3 Enhanced durability of drilling equipment
8.13.1.4 Environmental and regulatory
8.13.2 Applications.
8.13.3 Market size and opportunity
8.13.4 Companies
8.14 Tools And Manufacturing
8.14.1 Market drivers and trends
8.14.2 Applications
8.14.3 Companies
8.15 Anti-Counterfeiting
8.15.1 Market drivers and trends
8.15.2 Applications
8.15.3 Companies

9 Nanocoatings Companies

List of Tables

Table 1: Properties of nanocoatings
Table 2: Markets for nanocoatings
Table 3: Categorization of nanomaterials
Table 4: Technology for synthesizing nanocoatings agents
Table 5: Film coatings techniques
Table 6: Nanomaterials used in nanocoatings and applications
Table 7: Graphene properties relevant to application in coatings
Table 8: Nanocellulose applications timeline in the coatings and paints markets.
Table 9: Nanocoatings market structure
Table 10: Anti-fingerprint nanocoatings-Nanomaterials used, principles, properties and applications
Table 11: Revenues for anti-fingerprint nanocoatings, 2010-2025, US$.
Table 12: Anti-fingerprint nanocoatings product and application developers.
Table 13: Anti-microbial nanocoatings-Nanomaterials used, principles, properties and applications
Table 14: (A) illustrates biocidal nanocoating resistance to bacteria. (B) illustrates biocidal nanocoating resistance to fungus.
Table 15: Nanomaterials utilized in anti-microbial coatings-benefits and applications.
Table 16: Anti-microbial nanocoatings markets and applications.
Table 17: Opportunity for anti-microbial nanocoatings.
Table 18: Revenues for anti-microbial nanocoatings, 2010-2025, US$
Table 19: Anti-microbial nanocoatings product and application developers.
Table 20: Anti-corrosion nanocoatings-Nanomaterials used, principles, properties and applications.
Table 21: Anti-corrosion nanocoatings markets and applications
Table 22: Revenues for anti-corrosion nanocoatings, 2010-2025, US$
Table 23: Anti-corrosion nanocoatings product and application developers.
Table 24: Abrasion & wear resistant nanocoatings-Nanomaterials used, principles, properties and applications.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Abrasion & wear resistant nanocoatings markets and applications.</td>
</tr>
<tr>
<td>26</td>
<td>Abrasion and wear resistant nanocoatings markets and applications.</td>
</tr>
<tr>
<td>28</td>
<td>Abrasion and wear resistant nanocoatings product and application developers.</td>
</tr>
<tr>
<td>29</td>
<td>Barrier nanocoatings markets and applications.</td>
</tr>
<tr>
<td>31</td>
<td>Barrier nanocoatings product and application developers.</td>
</tr>
<tr>
<td>32</td>
<td>Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.</td>
</tr>
<tr>
<td>33</td>
<td>Anti-fouling and easy-to-clean nanocoatings markets and applications.</td>
</tr>
<tr>
<td>34</td>
<td>Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2025, US$.</td>
</tr>
<tr>
<td>35</td>
<td>Anti-fouling and easy-to-clean nanocoatings product and application developers.</td>
</tr>
<tr>
<td>36</td>
<td>Self-cleaning (bionic) nanocoatings-Nanomaterials used, principles, properties and applications.</td>
</tr>
<tr>
<td>37</td>
<td>Self-cleaning (bionic) nanocoatings-Markets and applications.</td>
</tr>
<tr>
<td>39</td>
<td>Self-cleaning (bionic) nanocoatings product and application developers.</td>
</tr>
<tr>
<td>40</td>
<td>Self-cleaning (photocatalytic) nanocoatings-Nanomaterials used, principles, properties and applications.</td>
</tr>
<tr>
<td>41</td>
<td>Self-cleaning (photocatalytic) nanocoatings-Markets and applications.</td>
</tr>
<tr>
<td>43</td>
<td>Self-cleaning (photocatalytic) nanocoatings product and application developers.</td>
</tr>
<tr>
<td>44</td>
<td>UV-resistant nanocoatings-Nanomaterials used, principles, properties and applications.</td>
</tr>
<tr>
<td>45</td>
<td>UV-resistant nanocoatings-Markets and applications.</td>
</tr>
<tr>
<td>46</td>
<td>Revenues for UV-resistant nanocoatings, 2010-2025, US$.</td>
</tr>
<tr>
<td>47</td>
<td>UV-resistant nanocoatings product and application developers.</td>
</tr>
<tr>
<td>48</td>
<td>Thermal barrier and flame retardant nanocoatings-Nanomaterials used, principles, properties and applications.</td>
</tr>
<tr>
<td>49</td>
<td>Nanomaterials utilized in thermal barrier and flame retardant coatings and benefits thereof.</td>
</tr>
<tr>
<td>50</td>
<td>Thermal barrier and flame retardant nanocoatings-Markets and applications.</td>
</tr>
<tr>
<td>51</td>
<td>Revenues for thermal barrier and flame retardant nanocoatings, 2010-2025, US$.</td>
</tr>
<tr>
<td>52</td>
<td>Thermal barrier and flame retardant nanocoatings product and application developers.</td>
</tr>
<tr>
<td>53</td>
<td>Anti-icing nanocoatings-Nanomaterials used, principles, properties, applications.</td>
</tr>
<tr>
<td>54</td>
<td>Nanomaterials utilized in anti-icing coatings and benefits thereof.</td>
</tr>
<tr>
<td>55</td>
<td>Anti-icing nanocoatings-Markets and applications.</td>
</tr>
<tr>
<td>56</td>
<td>Opportunity for anti-icing nanocoatings.</td>
</tr>
<tr>
<td>58</td>
<td>Anti-icing nanocoatings product and application developers.</td>
</tr>
<tr>
<td>59</td>
<td>Anti-reflective nanocoatings-Nanomaterials used, principles, properties and applications.</td>
</tr>
<tr>
<td>60</td>
<td>Anti-reflective nanocoatings-Markets and applications.</td>
</tr>
<tr>
<td>61</td>
<td>Market opportunity for anti-reflection nanocoatings.</td>
</tr>
<tr>
<td>63</td>
<td>Anti-reflective nanocoatings product and application developers.</td>
</tr>
<tr>
<td>64</td>
<td>Types of self-healing coatings.</td>
</tr>
<tr>
<td>65</td>
<td>Self-healing nanocoatings product and application developers.</td>
</tr>
<tr>
<td>66</td>
<td>Nanocoatings applied in the consumer electronics industry.</td>
</tr>
<tr>
<td>68</td>
<td>Consumer electronics nanocoatings companies.</td>
</tr>
<tr>
<td>69</td>
<td>Types of nanocoatings utilized in aerospace and application.</td>
</tr>
<tr>
<td>70</td>
<td>Revenues for nanocoatings in aerospace, 2010-2025, US$.</td>
</tr>
<tr>
<td>71</td>
<td>Aerospace nanocoatings companies.</td>
</tr>
<tr>
<td>73</td>
<td>Packaging nanocoatings companies.</td>
</tr>
<tr>
<td>74</td>
<td>Nanocoatings applied in the automotive industry.</td>
</tr>
<tr>
<td>75</td>
<td>Revenues for nanocoatings in the automotive industry, 2010-2025, US$.</td>
</tr>
<tr>
<td>76</td>
<td>Automotive nanocoatings companies.</td>
</tr>
<tr>
<td>77</td>
<td>Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.</td>
</tr>
<tr>
<td>78</td>
<td>Types of advanced coatings applied in medical devices and implants.</td>
</tr>
<tr>
<td>79</td>
<td>Nanomaterials utilized in medical implants.</td>
</tr>
<tr>
<td>80</td>
<td>Revenues for nanocoatings in medical and healthcare, 2010-2025, US$.</td>
</tr>
<tr>
<td>81</td>
<td>Medical nanocoatings companies.</td>
</tr>
<tr>
<td>82</td>
<td>Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.</td>
</tr>
</tbody>
</table>
Table 83: Revenues for nanocoatings in textiles and apparel, 2010-2025, US$.*
Table 84: Textiles nanocoatings companies
Table 85: Revenues for nanocoatings in military and defence, 2010-2025, US$.
Table 86: Military and defence nanocoatings product and application developers.
Table 87: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2025, US$
Table 88: Household care, sanitary and indoor air quality nanocoatings product and application developers.
Table 89: Nanocoatings applied in the marine industry-type of coating, nanomaterials utilized and benefits
Table 90: Revenues for nanocoatings in the marine industry, 2010-2025, US$.
Table 91: Marine nanocoatings product and application developers
Table 92: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits.
Table 93: Photocatalytic nanocoatings-Markets and applications
Table 94: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2025, US$
Table 95: Construction, architecture and exterior protection nanocoatings product and application developers.
Table 96: Revenues for nanocoatings in renewable energy, 2010-2025, US$.
Table 97: Renewable energy nanocoatings product and application developers.
Table 98: Desirable functional properties for the oil and gas industry afforded by nanomaterials in coatings
Table 99: Revenues for nanocoatings in oil and gas exploration, 2010-2025, US$.
Table 100: Oil and gas nanocoatings product and application developers.
Table 101: Tools and manufacturing nanocoatings product and application developers.
Table 102: Anti-counterfeiting nanocoatings product and application developers.

List of Figures

Figure 1: Global Paints and Coatings Market, share by end user market
Figure 2: Estimated revenues for nanocoatings, 2010-2025 based on current revenues generated by nanocoatings companies and predicted growth. Base year for estimates is 2014.
Figure 3: Market revenues for nanocoatings 2014, US$, by market
Figure 4: Market revenues for nanocoatings 2025, US$, by market
Figure 5: Markets for nanocoatings 2014, %
Figure 6: Markets for nanocoatings 2025, %
Figure 7: Market for nanocoatings 2014, by nanocoatings type, US$
Figure 8: Markets for nanocoatings 2014, by nanocoatings type, %.
Figure 9: Market for nanocoatings 2025, by nanocoatings type, US$
Figure 10: Market for nanocoatings 2025, by nanocoatings type, %
Figure 11: Electrospray deposition
Figure 12: CVD technique.
Figure 13: Antimicrobial activity of Graphene oxide (GO)
Figure 14: Water permeation through a brick without (left) and with (right) “graphene paint” coating
Figure 15: Graphene heat transfer coating
Figure 16: Silica nanoparticle anti-reflection coating on glass.
Figure 17: Nanoclays structure. The dimensions of a clay platelet are typically 200-1000 nm in lateral dimension and 1 nm thick
Figure 18: Schematic of typical commercialization route for nanocoatings producer.
Figure 19: Market for nanocoatings 2014, by nanocoatings type, US$.
Figure 20: Markets for nanocoatings 2014, by nanocoatings type, US$.
Figure 21: Market for nanocoatings 2025, by nanocoatings type, US$.
Figure 22: Types of anti-fingerprint coatings applied to touchscreens
Figure 23: Schematic of anti-fingerprint nanocoatings
Figure 24: Toray anti-fingerprint film (left) and an existing lipophilic film (right).
Figure 25: Anti-fingerprint nanocoatings markets and applications
Figure 26: Revenues for anti-fingerprint nanocoatings, 2012-2025, US$
Figure 27: Markets for anti-fingerprint nanocoatings 2014, %
Figure 28: Mechanism of microbial inactivation and degradation with anti-microbial PhotoProtect nanocoatings
Figure 29: Schematic of silver nanoparticles penetrating bacterial cell membrane.
Figure 30: Antibacterial mechanism of nanosilver particles
Figure 31: Revenues for anti-microbial nanocoatings, 2010-2025, US$
Figure 32: Markets for anti-microbial nanocoatings 2014, %
Figure 33: Nanovate CoP coating.
Figure 34: 2000 hour salt fog results for Teslan nanocoatings
Figure 35: AnCatt proprietary polyaniline nanodispersion and coating structure.
Figure 36: Revenues for anti-corrosion nanocoatings, 2010-2025, US$
Figure 37: Markets for anti-corrosion nanocoatings 2014, %.
Figure 38: Revenues for abrasion and wear-resistant nanocoatings, 2010-2025, millions US$.
Figure 39: Markets for abrasion and wear-resistant nanocoatings 2014, %.
Figure 40: Nanocomposite oxygen barrier schematic.
Figure 41: Schematic of barrier nanoparticles deposited on flexible substrates.
Figure 42: Revenues for barrier nanocoatings, 2010-2025, US$
Figure 43: Markets for barrier nanocoatings 2014, %.
Figure 44: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2025, US$.
Figure 45: Markets for anti-fouling and easy clean nanocoatings 2014, by %.
Figure 46: Revenues for self-cleaning (bionic) nanocoatings, 2010-2025, US$.
Figure 47: Markets for self-cleaning (bionic) nanocoatings 2014, %
Figure 48: Titanium dioxide-coated glass (left) and ordinary glass (right).
Figure 49: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.
Figure 50: Schematic showing the self-cleaning phenomena on superhydrophilic surface.
Figure 51: Principle of superhydrophilicity.
Figure 52: Schematic of photocatalytic air purifying pavement.
Figure 53: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness.
Figure 54: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2025, US$.
Figure 55: Markets for self-cleaning (photocatalytic) nanocoatings 2014, %.
Figure 56: Revenues for UV-resistant nanocoatings, 2010-2025, US$
Figure 57: Markets for UV-resistant nanocoatings 2014, %.
Figure 58: Flame retardant nanocoating.
Figure 59: Revenues for thermal barrier and flame retardant nanocoatings, 2010-2025, US$.
Figure 60: Markets for thermal barrier and flame retardant nanocoatings 2014, %.
Figure 61: Carbon nanotube based anti-icing/de-icing device.
Figure 62: Nanocoated surface in comparison to existing surfaces.
Figure 63: CNT anti-icing nanocoating.
Figure 64: Revenues for anti-icing nanocoatings, 2010-2025, US$.
Figure 65: Markets for anti-icing nanocoatings 2014, %.
Figure 66: Demo solar panels coated with nanocoatings.
Figure 67: Schematic of AR coating utilizing nanoporous coating.
Figure 68: Schematic of KhepriCoat®. Image credit: DSM.
Figure 69: Revenues for anti-reflective nanocoatings, 2010-2025, US$.
Figure 70: Metal strip coated with thermochromic nanoparticles.
Figure 71: Revenues for nanocoatings, 2010-2025.
Figure 72: Market revenues for nanocoatings 2014, US$.
Figure 73: Market revenues for nanocoatings 2025, US$.
Figure 74: Markets for nanocoatings 2014, %.
Figure 75: Markets for nanocoatings 2025, %.
Figure 76: Phone coated in WaterBlock submerged in water tank.
Figure 77: Nanocoating submerged in water.
Figure 78: Revenues for nanocoatings in electronics, 2010-2025, US$.
Figure 79: Nanocoatings in electronics 2014, by nanocoatings type %.*
Figure 80: Revenues for nanocoatings in aerospace, 2010-2025, US$.
Figure 81: Nanocoatings in aerospace 2014, by nanocoatings type %.
Figure 82: O2 Block from Nanobiomatters.
Figure 83: Nanocomposite oxygen barrier schematic.
Figure 84: Oso fresh food packaging incorporating antimicrobial silver.
Figure 85: Global packaging coatings market by region, 2014.
Figure 86: Revenues for nanocoatings in packaging, 2010-2025, US$.
Figure 87: Nanocoatings in packaging 2014, by nanocoatings type %.
Figure 88: Nissan Scratch Shield.
Figure 89: Revenues for nanocoatings in the automotive industry, 2010-2025, US$.
Figure 90: Nanocoatings in the automotive industry 2014, by nanocoatings type %.
Figure 91: Revenues for nanocoatings in medical and healthcare, 2010-2025, US$.
Figure 92: Nanocoatings in medical and healthcare 2014, by nanocoatings type %.
Figure 93: Revenues for nanocoatings in textiles and apparel, 2010-2025, US$.
Figure 94: Nanocoatings in textiles and apparel 2014, by nanocoatings type %.
Figure 95: Revenues for nanocoatings in military and defence, 2010-2025, US$.
Figure 96: Nanocoatings in military and defence 2014, by nanocoatings type %.
Figure 97: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2025, US$.
Figure 98: Nanocoatings in household care, sanitary and indoor air quality 2014, by nanocoatings type %
Figure 99: Revenues for nanocoatings in the marine industry, 2010-2025, US$.
Figure 100: Nanocoatings in the marine industry 2014, by nanocoatings type %.
Figure 101: Mechanism of photocatalytic NOx oxidation on active concrete road.
Figure 102: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.
Figure 103: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague
Figure 104: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2025, US$.
Figure 105: Nanocoatings in construction, architecture and exterior protection 2014, by nanocoatings type %
Figure 106: Revenues for nanocoatings in renewable energy, 2010-2025, US$.
Figure 107: Nanocoatings in renewable energy 2014, by nanocoatings type %.
Figure 108: Revenues for nanocoatings in oil and gas exploration, 2010-2025, US$.
Figure 109: Nanocoatings in oil and gas exploration 2014, by nanocoatings type %.
Figure 110: Security tag developed by Nanotech Security.

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3641367/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>The Global Market for Nanocoatings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3641367/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCH3CQ4J</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User:</td>
<td>USD 1713</td>
</tr>
<tr>
<td>Hard Copy:</td>
<td>USD 1782 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - Single User:</td>
<td>USD 1851 + USD 58 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>___________________________</td>
<td>Last Name:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:*</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td>___________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card:
 You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check:
 Please post the check, accompanied by this form, to:
 Research and Markets,
 Guinness Center,
 Taylors Lane,
 Dublin 8,
 Ireland.

☐ Pay by wire transfer:
 Please transfer funds to:

 Account number 833 130 83
 Sort code 98-53-30
 Swift code ULSBIE2D
 IBAN number IE78ULSB98533083313083
 Bank Address Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World