Progress in Intelligent Transportation Systems and IoT/M2M Communications

Description: This report reflects a steady movement of the Intelligent Transportation Systems (ITS) towards reaching their goal – minimizing roads accidents and traffic jam. In connection with this goal, the report provides details of the ITS structure and architecture; and emphasizes contributions of wireless technologies designed for IoT/M2M – this type of communications is becoming very important for ITS to enhance their characteristics. In 2015, the IoT has already disrupted the 4G roadmap and it is becoming a prime driver of the 5G specification process.

The following recent (or still in the development) wireless communications standards are addressed:

- LoRa
- LTE-M
- 802.11ah
- EC-GSM
- Weightless Protocols
- DASH7
- Other.

These standards are being developed with considerations of IoT/M2M communications specifics (though they may be useful for other use cases as well).

The report also addresses the current status of IoT/M2M and ITS industries, their markets and surveys vendors’ portfolios.

The significant part of this report addresses the introduction of a driverless car - IoT/M2M communication supports all major functionalities of such a car. Details of a young industry development, its major players, the standardization process, hurdles and enablers are analyzed. The report emphasizes the driverless car benefits - they, as it is envisioned currently, will be realized in the 2035-2040 time frame; with these cars on roads already in 2018-2020. The industry identified driverless cars as most viable form of ITS, dominating the roadways by 2040 and sparking dramatic changes in vehicular travel and the auto industry.

The report also surveys 802.11ah-related patents (2015-2016).

The report is written for a wide audience of technical and managerial staff involved in the advanced ITS development; and for specialists in communications technologies that support such a development; particular IoT/M2M communications.

Contents:

1.0 Introduction
1.1 Statistics
1.2 Goal
1.3 Scope
1.4 Research Methodology
1.5 Target Audience

2.0 ITS: Major Components and Characteristics
2.1 General
2.2 ITS Introduction: U.S.
2.3 Structure
2.4 Layers and Components
2.5 Key Technologies
2.6 Subsystems
2.7 ITS Architecture: U.S.
2.7.1 General
2.7.2 Functionalities
2.7.3 Layers
2.7.3.1 Details: Communications Layer
2.7.3.2 Networks
2.7.4 Version 7.0
2.8 ITS Standardization: In Progress
2.8.1 Overview
2.8.2 ETSI - Europe
2.8.3 U.S.
2.8.3.1 General
2.8.3.2 National Transportation Communications for ITS Protocol (NTCIP)
2.8.3.2.1 Scope
2.8.3.2.2 Family
2.8.4 China
2.8.5 International
2.8.5.1 General
2.8.5.2 ITU
2.8.6 Summary
2.9 ITS Applications
2.10 ITS Market Statistics
2.10.1 General
2.10.2 Assumptions
2.10.3 Estimate

3.0 IoT/M2M and ITS
3.1 Differences: H2H and IoT/M2M Communications
3.2 Definition and Process
3.2.1 Enablers and Braking Points: 2G-5G
3.3 Data
3.4 Properties and Architecture
3.5 Specifics and Current Status
3.5.1 Cellular
3.5.2 Short-range
3.5.3 Open Standard
3.6 Challenges
3.7 Multiple Efforts
3.8 IoT/M2M Standardization: Organizations and Technologies
3.8.1 3GPP and IoT/M2M
3.8.1.1 LTE Cat-M
3.8.1.1.1 IoT/M2M: Requirements to LTE
3.8.1.1.2 3GPP LTE Rel. 12 Enhancement for IoT/M2M
3.8.1.1.3 3GPP LTE Rel. 13 Enhancement for IoT/M2M
3.8.1.1.4 Current Situation
3.8.1.1.5 Summary of LTE/IoT Features
3.8.1.1.6 Vendors
Altair (acquired by Sony in 2016)
Mistbase
Sequans
3.8.1.2 EC-GSM-IoT
3.8.2 OneM2M Alliance
3.8.2.1 Varieties
3.8.2.2 Service Layer Architecture
3.8.2.3 Benefits
3.8.3 M2M World Alliance
3.8.4 M2M Alliance
3.8.5 Open Mobile Alliance (OMA)
3.8.5.1 OMA Lightweight M2M Protocol
3.8.6 ETSI TC
3.8.6.1 Documents
3.8.6.2 Architecture
3.8.6.3 M2M Applications in ITS
3.8.7 GSC MSTF
3.8.8 ITU
3.8.8.1 Work Plan
3.8.8.2 ITU Recommendations
3.8.9 IPSO Alliance
3.8.10 IETF and IP/WSN
3.8.10.1 Major Projects
3.8.11 TIA
3.8.12 Weightless Protocols
3.8.12.1 Weightless SIG
3.8.12.2 Common Features
3.8.12.3 Weightless-W
3.8.12.3.1 White Spaces Communications - Principles
3.8.12.3.2 Definition
3.8.12.3.3 Rational
3.8.12.3.4 Ecosystem and Use Cases
3.8.12.3.5 Weightless-W Specifics
3.8.12.3.6 Changes
3.8.12.4 Weightless-N
3.8.12.4.1 General
3.8.12.4.2 Open Standard
3.8.12.4.3 Nwave
3.8.12.4.4 First Deployments
3.8.12.5 Weightless-P
3.8.12.5.1 General
3.8.12.5.2 Details
3.8.12.5.3 M2COMM
3.8.12.6 Weightless Technologies Comparison
3.8.13 IEEE
3.8.13.1 802.11ah (Wi-Fi HaLow)
3.8.13.1.1 General
3.8.13.1.2 Goal and Schedule
3.8.13.1.3 Attributes
3.8.13.1.4 Use Cases
3.8.13.1.5 PHY Layer
3.8.13.1.5.1 Bandwidth
3.8.13.1.5.2 Channelization
3.8.13.1.5.3 Transmission Modes and MIMO
3.8.13.1.6 MAC Layer
3.8.13.1.7 Summary
3.8.14 DASH7
3.8.14.1 General
3.8.14.2 DASH7 and IoT/M2M
3.8.14.4 DASH7 Alliance
3.8.14.4.1 DASH7 Mode 2
3.8.14.4.2 Physical Layer
3.8.14.4.3 Data Layer
3.8.14.4.4 Network Layer
3.8.14.4.5 Upper Layers
3.8.14.5 Classes
3.8.14.6 Specification
3.8.14.7 Characteristics - Summary
3.8.14.8 433 MHz Transmission Specifics
3.8.14.9 Green Technology
3.8.14.10 Applications
3.8.14.11 Industry
Evigia
GuardRFID
Hi-G-Tek
Identec Solutions
Savi
TI
Wizzilab
3.8.15 LoRa
3.8.15.1 Alliance
3.8.15.2 Technology: General
3.8.15.3 Modulation
3.8.15.4 Long Range
3.8.15.5 Applications
3.8.15.6 Architecture
3.8.15.7 Classes
3.8.15.8 LoRaWAN
3.8.15.9 Major Characteristics - Summary
3.8.15.10 Semtech
3.8.15.11 Deployments
3.8.16 Comparison

4.0 ITS Segment of IoT/M2M
4.1 Importance
4.2 Classification
4.3 IoT/M2M Communications and ITS Major Applications
4.3.1 Benefits and Limitations
4.3.2 H2H and IoT/M2M Communications
4.3.2.1 Sensors

5.0 Market: IoT/M2M - ITS
5.1 Data
5.2 Situation
5.3 Structure
5.4 Estimate

6.0 Driverless Car - 5G Era
6.1 General - Definition
6.2 Time
6.2.1 ADAS
6.3 Directions
6.3.1 Current Status - Legislation
6.3.2 Major Benefits
6.3.3 Alternatives
6.4 Market Predictions and Price
6.4 Phases
6.4.1 Characteristics
6.5 Industry and R&D
6.5.1 Automakers and Suppliers
6.5.1.1 Audi
6.5.1.2 Ford
6.5.1.3 GM
6.5.1.4 Magna International
6.5.1.5 Nissan
6.5.1.6 Daimler/Mercedes
6.5.1.7 VW and AdaptiVe Consortium
6.5.1.8 Tesla Motors
6.5.1.9 Continental Automotive
6.5.1.10 Volvo
6.5.2 R&D and Competitors
6.5.2.1 Google
6.5.2.2 Baidu
6.5.2.3 DOTs
6.5.2.4 Telecom Readiness - 5G
6.5.2.4.1 Huawei
6.5.2.4.2 Swisscom
6.5.3 Start-ups
6.5.3.1 Cruise Automotive (was founded in 2013 and acquired by GM in 2016)
6.5.3.2 Induct Technologies
6.5.3.3 MobilEye
6.5.4 IoT/M2M Role - Internet of Cars
6.6 Standardization
6.6.1 NHTSA
6.6.1.1 Systems
6.6.1.2 Levels
6.6.2 SAE International
6.6.3 IEEE
6.6.4 Summary
6.7 Commercialization
6.8 Issues

7.0 IoT/M2M-ITS Communications Industry
AT&T
Aeris
Airbiquity
Arada
Autotalks
Axeda
B3IT
Cohda Wireless
Continental/HERE
Cisco
Gemalto
IMS
InterDigital
Jasper Wireless
Kore Telematics
Libelium
Numerex
QNX
Qualcomm
Raco Wireless
Sigfox
Telit
Wireless Logic

8.0 Technologies Comparison

9.0 Conclusions
Attachment I: 802.11ah - related Patents Survey (2015-2016)

Figure 1: Wireless Communications: ITS Environment
Figure 2: ITS Architecture - Components
Figure 3: Europe - Standardization Organizations
Figure 4: U.S.-Standardization Bodies
Figure 5: NTCIP Structure
Figure 6: ITS International -Standardization Bodies
Figure 7: TAM: Global ITS Devices ($B)
Figure 8: TAM: ITS WICT- Global ($B)
Figure 9: ITS Equipment Sales by Regions ($B)
Figure 10: IoT/M2M Communications Process
Figure 11: M2M-Simplified Architecture
Figure 12: Time Schedule
Figure 13: Structure - oneM2M - Service Layer
Figure 14: ETSI Activity - M2M
Figure 15: Frequency Spectrum (sub-1 GHz)
Figure 16: 802.11ah - Channelization Plan in U.S.
Figure 17: Mode 1 and Mode 2 - Comparison
Figure 18: DASH7 Mode 2 - PHY
Figure 19: Transmission Ranges
Figure 20: Features Comparison
Figure 21: LoRa Protocol Architecture
Figure 22: LoRaWAN Architecture
Figure 23: Battery Lifetime
Figure 24: Classification
Figure 25: Projections: IoT/M2M Traffic Volume (PB/Month)
Figure 26: TAM: Global IoT/M2M Communications ($B)
Figure 27: Estimate: Global Automotive M2M Connections (B)
Figure 28: IoT Market Size in ITS ($B)
Figure 29: Legislative Work (2016)
Figure 30: Levels

Table 1: Road Crashes Statistics
Table 2: 3GPP Release 10 - IoT/M2M
Table 3: CAT-0 and CAT-1 Characteristics
Table 4: Additional Characteristics
Table 5: Iceni Characteristics
Table 6: Weightless Technologies Comparison
Table 7: 802.11ah Features Summary
Table 8: LoRa Characteristics
Table 9: Regional Differences
Table 10: Technologies Comparison
Table 11: Components
Table 12: Comparison - Levels
Table 13: Current View - Schedule
Table 14: IoT/M2M-ITS Service Offerings - Major Service Providers
Table 15: Technologies Comparison

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3644021/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Progress in Intelligent Transportation Systems and IoT/M2M Communications
Web Address: http://www.researchandmarkets.com/reports/3644021/
Office Code: SCBRQZNT

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 4200</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td></td>
<td>USD 5600</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:
Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World