The Global Market for Nanoelectronics: Flexible, Stretchable and Printable Electronics, Conductive Films and Inks, Displays, Transistors, ICs, Memory Devices, Coatings and Photonics

Description: The electronics industry will witness significant change and growth in the next decade driven by:

- Scaling
- Growth of mobile wireless devices
- Huge growth in the Internet of Things (IoT)
- Data, logic and applications moving to the Cloud
- Ubiquitous electronics

To meet these market demands, power and functionality needs to improve hugely, while being cost effective, driving demand for nanomaterials that will allow for novel architectures, new types of energy harvesting and sensor integration. As well as allowing for greater power, improved performance and bandwidth, decreased size and cost, improved flexibility and better thermal management, the exploitation of nanomaterials allows for new device designs, new package architectures, new network architectures and new manufacturing processes. This will lead to greater device integration and density, and reduced time to market.

Semiconducting inorganic nanowires (NWs), carbon nanotubes, nanofibers, nanofibers, quantum dots, graphene and other 2D materials have been extensively explored in recent years as potential building blocks for nanoscale electronics, optoelectronics and photonics components, coatings and devices.

The report covers nanotechnology and nanomaterials related to the following markets and applications:

- Flexible, Stretchable and Printable Electronics
- Conductive Films and Inks
- Wearable health monitoring
- Electronic textiles
- HMI automotive displays
- Displays
- Transistors
- Integrated Circuits
- Other components
- Memory Devices
- Conductive and waterproof electronics coatings
- Photonics

Contents:

1 Research Methodology
 1.1 Commercial Impact Rating System
 1.2 Market Challenges Rating System

2 Executive Summary
 2.1 Scaling
 2.2 Growth of mobile wireless devices
 2.3 Internet of things (IoT)
 2.4 Data, logic and applications moving to the Cloud
 2.5 Ubiquitous electronics
 2.5.1 Growth in automotive interior electronics
 2.5.2 Growth in wearable medical diagnostics
2.6 Nanomaterials for new device design and architectures
2.7 Carbon and 2D nanomaterials

3 Nanomaterials
3.1 Properties Of Nanomaterials
3.2 Categorization

4 Nanomaterials In Nanoelectronics
4.1 Aluminium Oxide Nanoparticles
 4.1.1 Properties
 4.1.2 Applications
 4.1.3 Demand by market
 4.1.4 Technology readiness level (TRL)
4.2 Antimony Tin Oxide Nanoparticles
 4.2.1 Properties
 4.2.2 Applications
 4.2.3 Demand by market
 4.2.4 Technology readiness level (TRL)
4.3 Carbon Nanotubes
 4.3.1 Properties
 4.3.2 Applications
 4.3.3 Demand by market
 4.3.4 Technology readiness level (TRL)
4.4 Cerium Oxide Nanoparticles
 4.4.1 Properties
 4.4.2 Applications
 4.4.3 Demand by market
 4.4.4 Technology readiness level (TRL)
4.5 Copper Oxide Nanoparticles
 4.5.1 Properties
 4.5.2 Applications
 4.5.3 Demand by market
 4.5.4 Technology readiness level (TRL)
4.6 Gold Nanoparticles
 4.6.1 Properties
 4.6.2 Applications
 4.6.3 Demand by market
 4.6.4 Technology readiness level (TRL)
4.7 Graphene
 4.7.1 Properties
 4.7.2 Applications
 4.7.3 Demand by market
 4.7.4 Technology readiness level (TRL)
4.8 Iron Oxide Nanoparticles
 4.8.1 Properties
 4.8.2 Applications
 4.8.3 Demand by market
 4.8.4 Technology readiness level (TRL)
4.9 Nanocellulose
 4.9.1 Properties
 4.9.2 Applications
 4.9.3 Demand by market
 4.9.4 Technology readiness level (TRL)
4.10 Nanodiamonds
 4.10.1 Properties
 4.10.2 Applications
 4.10.3 Demand by market
 4.10.4 Technology readiness level (TRL)
4.11 Nanosilver
 4.11.1 Properties
 4.11.2 Applications
 4.11.3 Demand by market
 4.11.4 Technology readiness level (TRL)
4.12 Nanowires
4.12.1 Properties
4.12.2 Applications
4.12.3 Demand by market
4.12.4 Technology readiness level (TRL)
4.13 Nickel Nanoparticles
4.13.1 Properties
4.13.2 Applications
4.13.3 Technology readiness level (TRL)
4.14 Quantum Dots
4.14.1 Properties
4.14.2 Applications
4.14.3 Demand by market
4.14.4 Technology readiness level (TRL)
4.15 Silicon Oxide Nanoparticles
4.15.1 Properties
4.15.2 Applications
4.15.3 Demand By Market
4.16 Zirconium Oxide Nanoparticles
4.16.1 Properties
4.16.2 Applications
4.16.3 Demand by market
4.16.4 Technology readiness level (TRL)
4.17 Graphene And Carbon Quantum Dots
4.17.1 Properties
4.17.2 Applications
4.18 Yttrium Oxide Nanoparticles
4.18.1 Properties
4.18.2 Applications
4.19 Carbon Onions
4.19.1 Properties
4.19.2 Applications
4.20 2D Materials
4.20.1 Black phosphorus/Phosphorene
4.20.1.1 Properties
4.20.1.2 Applications
4.20.2 C2N
4.20.2.1 Properties
4.20.2.2 Applications
4.20.3 Carbon nitride
4.20.3.1 Properties
4.20.3.2 Applications
4.20.4 Germanene
4.20.4.1 Properties
4.20.4.2 Applications
4.20.5 Graphdiyne
4.20.5.1 Properties
4.20.5.2 Applications
4.20.6 Graphane
4.20.6.1 Properties
4.20.6.2 Applications
4.20.7 Hexagonal boron nitride
4.20.7.1 Properties
4.20.7.2 Applications
4.20.7.3 Producers
4.20.8 Molybdenum disulfide (MoS2)
4.20.8.1 Properties
4.20.8.2 Applications
4.20.9 Rhenium disulfide (ReS2) and diselenide (ReSe2)
4.20.9.1 Properties
4.20.9.2 Applications
4.20.10 Silicene
4.20.10.1 Properties
4.20.10.2 Applications
4.20.11 Stanene/tinene
4.20.11.1 Properties
4.20.11.2 Applications
4.20.12 Tungsten diselenide
4.20.12.1 Properties
4.20.12.2 Applications

5 The Global Nanoelectronics Market
5.1 Flexible Electronics, Conductive Films And Displays
5.1.1 Market Drivers And Trends
5.1.1.1 ITO replacement for flexible electronics
5.1.1.2 Growth in the wearable electronics market
5.1.1.3 Growth in wearable health monitoring
5.1.1.4 Growth of HMI and display systems in the automotive industry
5.1.1.5 Touch technology requirements
5.1.2 Applications
5.1.2.1 Transparent Electrodes In Flexible Electronics
5.1.2.2 Electronic Textiles
5.1.2.3 Electronic Paper
5.1.2.4 Wearable Health Monitoring
5.1.2.5 Automotive HMI And Displays
5.1.3 Market Size And Opportunity
5.1.3.1 Touch Panel And ITO Replacement
5.1.3.2 Displays
5.1.3.3 Electronic Textiles
5.1.4 Market Challenges
5.1.4.1 Competing Materials
5.1.4.2 Cost In Comparison To ITO
5.1.4.3 Fabricating SWNT Devices
5.1.4.4 Problems With Transfer And Growth
5.1.4.5 Improving Sheet Resistance
5.1.4.6 Difficulties In Display Panel Integration
5.1.5 Application And Product Developers
5.2 Conductive Inks
5.2.1 Market Drivers And Trends
5.2.1.1 Increased Demand For Printed Electronics
5.2.1.2 Limitations Of Existing Conductive Inks
5.2.1.3 Growth In The 3D Printing Market
5.2.1.4 Growth In The Printed Sensors Market
5.2.2 Applications
5.2.3 Market Size And Opportunity
5.2.3.1 Total Market Size
5.2.3.2 Nanotechnology And Nanomaterials Opportunity
5.2.4 Market Challenges
5.2.5 Application And Product Developers
5.3 Transistors, Integrated Circuits And Other Components
5.3.1 Market Drivers And Trends
5.3.1.1 Scaling
5.3.1.2 Limitations Of Current Materials
5.3.1.3 Limitations Of Copper As Interconnect Materials
5.3.1.4 Need To Improve Bonding Technology
5.3.1.5 Need To Improve Thermal Properties
5.3.2 Applications
5.3.3 Market Size And Opportunity
5.3.3.1 Total Market Size
5.3.3.2 Nanotechnology And Nanomaterials Opportunity
5.3.4 Market Challenges
5.3.4.1 Competition from other materials
5.3.4.2 Lack of band gap
5.3.4.3 Transfer and integration
5.3.5 Application And Product Developers
5.4 Memory Devices
5.4.1 Market Drivers And Trends
5.4.1.1 Density And Voltage Scaling
5.4.1.2 Growth In The Smartphone And Tablet Markets
5.4.1.3 Growth In The Flexible Electronics Market
5.4.2 Applications
5.4.3 Market Size And Opportunity
5.4.3.1 Total Market Size
5.4.3.2 Nanotechnology And Nanomaterials Opportunity
5.4.4 Market Challenges
5.4.5 Application And Product Developers
5.5 Electronics Coatings
5.5.1 Market Drivers And Trends
5.5.1.1 Waterproofing And Permeability
5.5.1.2 Improved Aesthetics And Reduced Maintenance
5.5.1.3 Proliferation Of Touch Panels
5.5.1.4 Need For Efficient Moisture And Oxygen Protection In Flexible And Organic Electronics
5.5.2 Applications
5.5.3 Market Size And Opportunity
5.5.3.1 Total Market Size
5.5.3.2 Nanotechnology And Nanomaterials Opportunity
5.5.4 Market Challenges
5.5.5 Application And Product Developers
5.6 Photonics
5.6.1 Market Drivers And Trends
5.6.1.1 Increased Bandwidth At Reduced Cost
5.6.1.2 Increasing Sensitivity Of Photodetectors
5.6.2 Applications
5.6.2.1 Si photonics versus graphene
5.6.2.2 Optical modulators
5.6.2.3 Photodetectors
5.6.2.4 Plasmonics
5.6.2.5 Fiber lasers
5.6.3 Market Size And Opportunity
5.6.3.1 Total Market Size
5.6.3.2 Nanotechnology And Nanomaterials Opportunity
5.6.4 Market Challenges
5.6.5 Application And Product Developers

List of Tables

Table 1: Semiconductor Components of IoT Devices
Table 2: Nanoelectronics in next generation information processing
Table 3: Categorization of nanomaterials
Table 4: Markets, benefits and applications of aluminium oxide nanoparticles
Table 5: Markets, benefits and applications of antimony tin oxide nanoparticles
Table 6: Properties of CNTs and comparable materials
Table 7: Markets, benefits and applications of Carbon Nanotubes
Table 8: Markets, benefits and applications of cerium oxide nanoparticles
Table 9: Markets, benefits and applications of copper oxide nanoparticles
Table 10: Markets, benefits and applications of gold nanoparticles
Table 11: Properties of graphene
Table 12: Markets, benefits and applications of graphene
Table 13: Consumer products incorporating graphene
Table 14: Markets, benefits and applications of iron oxide nanoparticles
Table 15: Nanocellulose properties
Table 16: Properties and applications of nanocellulose
Table 17: Markets and applications of nanocellulose
Table 18: Markets, benefits and applications of nanodiamonds
Table 19: Markets, benefits and applications of nanosilver
Table 20: Markets, benefits and applications of nanowires
Table 21: Markets, benefits and applications of nickel nanoparticles
Table 22: Markets, benefits and applications of quantum dots
Table 23: Markets, benefits and applications of silicon oxide nanoparticles
Table 27: Markets, benefits and applications of zirconium oxide nanoparticles
Table 28: Schematic of (a) QDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4)
Table 29: Properties of graphene quantum dots
Table 30: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2.
Table 31: Markets and applications of phosphorene
Table 32: Markets and applications of C2N
Table 33: Markets and applications of germanene
Table 34: Markets and applications of graphdiyne
Table 35: Markets and applications of graphene
Table 36: Markets and applications of hexagonal boron-nitride
Table 37: Markets and applications of MoS2
Table 38: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2).
Table 39: Markets and applications of siliconene
Table 40: Markets and applications of stanene/tinene
Table 41: Markets and applications of tungsten diselenide
Table 42: Comparison of ITO replacements
Table 43: Applications in electronic textiles, by nanomaterials type and benefits thereof
Table 44: Applications in flexible electronics, flexible conductive films and displays, by nanomaterials type and benefits thereof
Table 45: Applications in wearable health monitoring
Table 46: Commercially available quantum dot display products
Table 47: Nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market-applications, stage of commercialization and estimated economic impact.
Table 48: Nanomaterials in the textiles market-applications, stage of commercialization and estimated economic impact
Table 49: Market challenges rating for nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market
Table 50: Comparative properties of conductive inks
Table 51: Applications in conductive inks by nanomaterials type and benefits thereof.
Table 52: Opportunities for nanomaterials in printed electronics
Table 53: Nanotechnology and nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact
Table 54: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market
Table 55: Applications in transistors, integrated circuits and other components, by nanomaterials type and benefits thereof
Table 56: Nanotechnology and nanomaterials in the transistors, integrated circuits and other components market-applications, stage of commercialization and estimated economic impact
Table 57: Market challenges rating for nanotechnology and nanomaterials in the transistors, integrated circuits and other components market
Table 58: Applications in memory devices, by nanomaterials type and benefits thereof.
Table 59: Nanotechnology and nanomaterials in the memory devices market-applications, stage of commercialization and estimated economic impact
Table 60: Market challenges rating for nanotechnology and nanomaterials in the memory devices market
Table 61: Nanocoatings applied in the consumer electronics industry
Table 62: Nanotechnology and nanomaterials in the electronics coatings market-applications, stage of commercialization and estimated economic impact
Table 63: Market challenges rating for nanotechnology and nanomaterials in the electronics coatings market
Table 64: Applications in photonics, by nanomaterials type and benefits thereof.
Table 65: Graphene properties relevant to application in optical modulators.
Table 66: Nanotechnology and nanomaterials in the photonics market-applications, stage of commercialization and estimated economic impact
Table 67: Market challenges rating for nanotechnology and nanomaterials in the photonics market
Table 68: List of Figures

Figure 1: Demand for aluminium oxide nanoparticles, by market
Figure 2: Technology Readiness Level (TRL) for Aluminium Oxide Nanoparticles.
Figure 3: Demand for antimony tin oxide nanoparticles, by market
Figure 4: Technology Readiness Level (TRL) for Antimony Tin Oxide Nanoparticles.
Figure 5: Demand for carbon nanotubes, by market
Figure 6: Technology Readiness Level (TRL) for Carbon Nanotubes
Figure 7: Demand for cerium oxide nanoparticles, by market
Figure 8: Technology Readiness Level (TRL) for cerium oxide nanoparticles
Figure 9: Demand for copper oxide nanoparticles, by market
Figure 10: Technology Readiness Level (TRL) for copper oxide nanoparticles
Figure 11: Demand for gold nanoparticles, by market
Figure 12: Technology Readiness Level (TRL) for gold nanoparticles
Figure 13: Graphene layer structure schematic
Figure 14: Demand for graphene, by market
Figure 15: Technology Readiness Level (TRL) for graphene
Figure 16: Demand for iron oxide nanoparticles, by market
Figure 17: Technology Readiness Level (TRL) for iron oxide nanoparticles
Figure 20: Hierarchical Structure of Wood Biomass
Figure 21: Types of nanocellululose
Figure 22: Demand for nanocellululose, by market
Figure 23: Technology Readiness Level (TRL) for nanocellululose
Figure 24: Demand for nanodiamonds, by market
Figure 25: Technology Readiness Level (TRL) for nanodiamonds
Figure 26: Supply chain for nanosilver products
Figure 27: Demand for nanosilver, by market
Figure 28: Demand for nanowires, by market
Figure 29: Technology Readiness Level (TRL) for nanowires
Figure 30: Technology Readiness Level (TRL) for nickel nanoparticles
Figure 31: Quantum dot
Figure 32: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band.
Figure 33: Demand for quantum dots, by market
Figure 34: Technology Readiness Level (TRL) for quantum dots
Figure 35: Demand for silicon oxide nanoparticles, by market
Figure 36: Demand for zirconium oxide nanoparticles, by market
Figure 37: Applications of yttrium oxide nanoparticles
Figure 38: TEM image of carbon onion
Figure 39: Black phosphorus structure
Figure 40: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal
Figure 41: Schematic of germanene
Figure 42: Graphdiyne structure
Figure 43: Schematic of Graphane crystal
Figure 44: Structure of hexagonal boron nitride
Figure 45: Structure of 2D molybdenum disulfide
Figure 46: Atomic force microscopy image of a representative MoS2 thin-film transistor.
Figure 47: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
Figure 48: Schematic of a monolayer of rhenium disulphide
Figure 49: Silicene structure
Figure 50: Monolayer silicene on a silver (111) substrate
Figure 51: Silicene transistor
Figure 52: Crystal structure for stanene
Figure 53: Atomic structure model for the 2D stanene on Bi2Te3(111)
Figure 54: Schematic of tungsten diselenide
Figure 55: The Tesla S’s touchscreen interface
Figure 56: Graphene-enabled bendable smartphone
Figure 57: 3D printed carbon nanotube sensor
Figure 58: Graphene-based fabric sensor
Figure 59: Electronic skin patch incorporating silicon nanomembranes
Figure 60: Wearable blood purification system
Figure 61: Wearable sensor that uses silver nanowires to monitor electrophysiological signals.
Figure 62: Wearable health monitor incorporating graphene photodetectors.
Figure 63: Graphene-based E-skin patch
Figure 64: Smart e-skin system comprising health-monitoring sensors, displays, and ultraflexible PLEDs
Figure 65: Bosch automotive touchscreen with haptic feedback
Figure 66: Canatu’s CNB™ touch sensor
Figure 67: Global touch panel market ($ million), 2011-2018
Figure 68: Capacitive touch panel market forecast by layer structure (Ksqm).
Figure 69: Global transparent conductive film market forecast (million $)
Figure 70: Global transparent conductive film market forecast by materials type, 2015, %
Figure 71: Global transparent conductive film market forecast by materials type, 2020, %
Figure 72: Global market for smart wearables (Millions US$)
Figure 73: QD-LCD supply chain
Figure 74: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates
Figure 75: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
Figure 76: Global market for conductive inks and pastes in printed electronics.
Figure 77: Transistor architecture trend chart
Figure 78: CMOS Technology Roadmap
Figure 79: Emerging logic devices
Figure 80: Phone coated in WaterBlock submerged in water tank
Figure 81: Hybrid graphene phototransistors
Figure 82: Schematic of QD laser device

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3673393/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: The Global Market for Nanoelectronics: Flexible, Stretchable and Printable Electronics, Conductive Films and Inks, Displays, Transistors, ICs, Memory Devices, Coatings and Photonics
Web Address: http://www.researchandmarkets.com/reports/3673393/
Office Code: SC

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) -</td>
<td>USD 1666</td>
</tr>
<tr>
<td>Single User:</td>
<td></td>
</tr>
<tr>
<td>Hard Copy:</td>
<td>USD 1706 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___ Last Name: ___
Email Address: * _______________________________________
Job Title: ___
Organisation: ___
Address: ___
City: ___
Postal / Zip Code: ____________________________________
Country: ___
Phone Number: __
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World