The Global Market for Nanomaterials in Flexible Screens, Transparent Conductive Films, Printable Electronics and Displays

Description:
As well as enabling novel approaches to display designs, nanomaterials are also incorporated into display components, such as transparent electrodes, thin film transistors, coatings, sensors, transparent conductors, and infrared and visible photodetectors.

Multinational companies such as Toshiba, Motorola, Hitachi, Sony, Panasonic, Philips and Samsung are developing nanomaterial-based display technologies, utilizing a variety of nanomaterials including graphene, carbon nanotubes, silver nanowires and quantum dots.

Nanomaterials for ITO replacement

ITO is the dominant material in transparent conductive films. However, the growth in flexible and curved devices requires novel materials to replace ITO. The unsuitability of ITO for flexible and stretchable electronics applications opens up opportunities for nanomaterials.

Quantum dot TVs

The significant increase in energy consumption globally has led to a market push for environmentally-friendly and renewable energy sources. When compared to LCD-TVs, QD-enhanced LCD-TVs use one fifth of the power. QDs also allow for improved battery life in other electronic devices such as smartphones and tablets.

This 238 page report provides a comprehensive analysis of the current and future competitive landscape for nanomaterials in Flexible Screens, Transparent Conductive Films and Displays, a market that will be worth over $10 billion at the components level by 2030.

Contents:

1 Executive Summary
1.1 Market drivers and trends
1.1.1 Scaling
1.1.2 Growth of mobile wireless devices
1.1.3 Internet of things (IoT)
1.1.4 Data, logic and applications moving to the Cloud
1.1.5 Ubiquitous electronics
1.1.6 Nanomaterials for new device design and architectures
1.1.7 Carbon and 2D nanomaterials

2 Properties Of Nanomaterials
2.1 Categorization

3 Flexible Electronics, Transparent Conductive Films And Displays
3.1 Market Drivers And Trends
3.1.1 ITO replacement
3.1.1.1 ITO shortcomings
3.1.1.2 Alternative materials
3.1.2 Growth in wearable electronics
3.1.2.1 Physical monitoring
3.1.3 Touch technology requirements
3.1.4 Cost and environmental friendliness
3.1.5 Improved performance with less power
3.1.6 Lower cost compared to OLED in displays
3.1.7 Need for improved barrier function
3.2 Market Size And Opportunity
3.2.1 ITO replacement materials in TCF
3.2.2 Wearable electronics
3.2.3 QD-TVs and displays
3.3 Nanomaterials Applications
 3.3.1 SWNTs
 3.3.2 Double-walled carbon nanotubes
 3.3.3 Graphene
 3.3.4 Silver nanowires
 3.3.5 Quantum dots
 3.3.5.1 On-edge (edge optic)
 3.3.5.2 On-surface (film)
 3.3.5.3 On-chip
 3.3.6 Quantum rods
 3.3.7 Quantum converters with red phosphors
 3.3.8 Nanocellulose
 3.3.8.1 Flexible energy storage
 3.3.9 Copper nanowires
 3.3.10 Nanofibers
4 Challenges
 3.4.1 Fabricating SWNT devices
 3.4.2 Fabricating graphene devices
 3.4.3 Competing materials
 3.4.4 Cost in comparison to ITO
 3.4.5 Problems with transfer and growth
 3.4.6 Improving sheet resistance
 3.4.7 High surface roughness of silver nanowires
 3.4.8 Electrical properties

4 Printable Conductive Inks
 4.1 Market Drivers And Trends
 4.1.1 Increased demand for printed electronics
 4.1.2 Limitations of existing conductive inks
 4.1.3 Growth in the 3D printing market
 4.1.4 Growth in printed sensors market
 4.2 Market Size And Opportunity
 4.3 Nanomaterials Applications
 4.3.1 Carbon Nanotubes
 4.3.2 Graphene
 4.3.3 Nanocellulose
 4.3.4 Silver Nanoparticle Inks
 4.3.5 Copper Nanoparticle Inks
 4.3.6 Silver Nanowires
 4.4 Challenges
 4.4.1 Processing
 4.4.2 Oxidation
 4.4.3 Cracking
 4.4.4 Contact resistance
 4.4.5 Aggregation

5 Product Developer Profiles 122-238 (123 Company Profiles)

List of Tables

- Table 1: Semiconductor Components of IoT Devices
- Table 2: Nanoelectronics in next generation information processing
- Table 3: Categorization of nanomaterials
- Table 4: Comparative analysis of ITO replacement materials
- Table 5: Overview of Metal-based TCFs
- Table 6: Application markets, competing materials, nanomaterials advantages and current market size in flexible substrates
- Table 7: Properties of SWNTs and graphene relevant to flexible electronics.
- Table 8: Comparative cost of TCF materials
- Table 9: Advantages and disadvantages of LCDs, OLEDs and QDs
- Table 10: Approaches for integrating QDs into displays
- Table 11: Commercially available quantum dot display products
Table 13: Comparative properties of conductive inks
Table 14: Comparative analysis of conductive inks
Table 15: Opportunities for nanomaterials in printed electronics
Table 17: Nanoelectronics industrial collaborations and target markets

List of Figures

Figure 1: Flexible organic light emitting diode (OLED) using graphene electrode
Figure 2: A large transparent conductive graphene film (about 20 x 20 cm2) manufactured by 2D Carbon Tech.
Figure 2a (right): Prototype of a mobile phone produced by 2D Carbon Tech using a graphene touch panel
Figure 3: Global touch panel market ($ million), 2011-2018
Figure 4: Capacitive touch panel market forecast by layer structure (Ksqm).
Figure 5: Global transparent conductive film market forecast (million $)
Figure 6: Global transparent conductive film market forecast by materials type, 2012-2020, millions $
Figure 7: Global transparent conductive film market forecast by materials type, 2015, %
Figure 8: Global transparent conductive film market forecast by materials type, 2020, %
Figure 9: Global market for smart sports clothing (Millions US$)
Figure 10: Global market for smart wearables (Millions US$)
Figure 11: Total QD display component revenues 2013-2025 ($M), conservative and optimistic estimates
Figure 12: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte
Figure 13: Flexible transistor sheet
Figure 14: Bending durability of Ag nanowires
Figure 15: Samsung QD-LCD TVs
Figure 16: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each color is limited to a narrow band
Figure 17: Methods for integrating QDs into LCD System. (a) On-chip (b) On-edge. (c) On-surface. 80 Figure 18: On-edge configuration
Figure 19: QD-film integration into a standard LCD display
Figure 20: Quantum phosphor schematic in LED TV backlight
Figure 21: NFC computer chip
Figure 22: NFC translucent diffuser schematic
Figure 23: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
Figure 24: Global market for conductive inks and pastes in printed electronics.
Figure 25: Vorbeck Materials conductive ink products
Figure 26: Nanotube inks
Figure 27: Graphene printed antenna
Figure 28: BGT Materials graphene ink product
Figure 29: Silver nanocomposite ink after sintering and resin bonding of discrete electronic components
Figure 30: Transparent conductive film incorporating silver nanowires

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3674878/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: The Global Market for Nanomaterials in Flexible Screens, Transparent Conductive Films, Printable Electronics and Displays
Web Address: http://www.researchandmarkets.com/reports/3674878/
Office Code: SC

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User:</td>
<td>USD 1330</td>
</tr>
<tr>
<td>Hard Copy:</td>
<td>USD 1356 + USD 57 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - Single User:</td>
<td>USD 1376 + USD 57 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:
Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp