
Description: The unique report is almost entirely based on the very latest information gathered and interpreted in 2016. Only a global up-to-date view makes sense in this fast-moving subject. Therefore the multilingual PhD level analysts have travelled intensively worldwide in 2015 and 2016 to report the latest research, conferences and expert opinions and to analyse how the markets and technologies will move over the coming 15 years.

A typical 10 year forecast is misleading here. For example, the analyst sees the reinvented traditional ICE powertrain in the form of the 48V mild hybrid peaking just after that and a huge market for the new energy independent vehicles will appear even later. Conferences were attended and extensive interviews carried out in Taiwan, Korea, Japan, Germany, Ireland, UK, USA and elsewhere clarifying such things as the window of opportunity and potential performance of the different options.

A chapter addresses the factors influencing powertrain design from component breakthroughs to new legislation. Another chapter covers the 48V mild hybrid and other chapters analyse strong hybrids in their various forms including fuel cell and the pure electric powertrain in its various forms to come. A final chapter looks at the key component advances now and in future from extreme engine downsizing to multiple energy harvesting/regeneration and structural supercapacitors and batteries.

A new and detailed roadmap is presented for 2016-2036 covering both technology and market development. Ten year forecasts are given for 46 categories of electric vehicle including 48V mild hybrids transitioning to be electric vehicles. No one else has this level of detail. Uniquely, the report presents a bigger picture of opportunity than that addressed by other observers and participants. For example, it is commonly taught that 48V mild hybrids can provide and store four times as much electricity for new clients but we show that accepting many new high power inputs of electricity from harvesting and regeneration is equally important.

Pure electric vehicles are typically seen as the end game in contactlessly charged form but, beyond that, we show the many energy independent forms appearing, some already on sale. We show how shaped components can evolve further into structural electronics and variants of the supercapacitor can compete with or enhance batteries. We benchmark what is happening in the air and on water but the focus is land vehicles on and off-road. The future is very different from that commonly portrayed and much more exciting.

Powertrain electrification priorities of some automotive companies beyond traditional ICE for the next ten years Source: Original tables and infographics pull together the analysis with latest presentations from leading vehicle and system manufacturers and developers in three continents. the analysts has travelled intensively to the facilities and events on the subject.

The report comes with 30 minutes free associated consultancy. Powertrains of land vehicles are changing out of recognition. Conventional internal combustion engine powertrains are being economically reinvented as 48V mild hybrids with engines downsized up to 70% and three pure electric modes. They will be able to meet even the 2030 emissions regulations after all.

Strong hybrid powertrains are proving very popular in the newer form of plug-in versions with long pure electric range, the old types being dead-ended other than in niche applications. Even pure electric vehicles are being reinvented with a new end game of energy independent vehicles relying on only sunshine and other ambient energy.

Look closer and the individual components are also being changed radically, including being merged into structural electronics. New forms of rotating electrical machine, energy storage, energy harvesting and regeneration and power electronics have broad applicability across most of this.

The bottom line of all this is that choice of powertrain is not purely a decision based on incremental improvement.
Factors include:

- Design for recyclability
- Disruptive new components
- New principles such as energy independence, autonomy
- Changes in law such as combatting global or local air pollution
- Government subsidies and tax breaks that can change suddenly
- Integration of mechanical, electrical and electronic parts - simpler with certain configurations and parts. For example components that move such as batteries swelling and shrinking and motors rotating are tough to integrate into structural materials as "structural electronics" - an important new discipline.
- Change in what is sought as with Porsche Engineering foreseeing a world of autonomous vehicles favouring pure electric powertrains but also commoditising the powertrain if vehicles are typically not bought by individuals any more but used on demand.

Contents:

1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Purpose and emphasis
 1.2. Choice of powertrains is influenced by many factors
 1.3. Future powertrain options in land vehicles
 1.4. Where cars are headed in 2030
 1.5. Future powertrain options in land vehicles 2016-2036: the detail
 1.6. Main influences in land vehicle powertrains
 1.6.1. New focus for improvement and choice
 1.6.2. New important powertrain options
 1.6.3. Common enablers
 1.6.4. Powertrain parameter priorities
 1.6.5. Disruptive change
 1.6.6. Summary of primary trends for the most important land vehicle powertrains 2016-2036
 1.7. Powertrain timeline 2016-2036
 1.8. Death of the strong hybrid that does not plug in?
 1.9. Manufacturer priorities 2016-2030
 1.10. Increasing importance of power electronics: proliferation and enhancement
 1.11. Structural electronics tears up the rule book
 1.12. Market size 2016-2026 for electric vehicles and 48V mild hybrid cars (non-EV and EV form)

2. INTRODUCTION
 2.1. What is a land vehicle powertrain?
 2.2. Layout of the report
 2.3. Entering the age of emissions control
 2.3.1. Tightening regulations
 2.3.2. Fuel options for greenhouse gas GHG control
 2.3.3. ICE thermal efficiency improvement for emission reduction
 2.3.4. Temperature control should get easier

3. TYPES OF POWERTRAIN
 3.1. Pure electric or hybrid
 3.2. Progression of vehicle powertrain electrification
 3.3. Sequence of electrification of powertrains
 3.4. Base solutions with performance variants
 3.5. Many options opening up at component and system level
 3.6. Small vs big vehicle electrification
 3.7. Link with water and air vehicles
 3.8. Influence of legislation - examples

4. MILD HYBRID 48V: NEW LIFE FOR THE TRADITIONAL ICE
 4.1. Mild hybrid history

5. STRONG HYBRID ELECTRIC POWERTRAiNS
 5.1. Strong "Full" Hybrid Electric Vehicles
 5.2. Strong hybrid configurations
 5.2.1. Plug in option
 5.3. Comparison of storage and range extender options
 5.4. Range extenders in context
5.5. Fuel cells for traction
5.6. Range extenders: not all about fuel cells!
5.6.1. Gas turbines and rotary combustion
5.6.2. Free piston engine range extenders

6. PURE ELECTRIC VEHICLE PEV
6.1. Powertrain
6.1.1. Architecture
6.1.2. Trend in number and position of traction motors.
6.1.3. Charging issues
6.1.4. Battery issues
6.1.5. Supercapacitor issues
6.1.6. Battery Management System
6.2. Wide adoption, small vehicles, buses, design issues
6.3. Cars and light commercial vehicles
6.4. Energy Independent Vehicles EIV
6.4.1. Why we want more than mechanical energy independence
6.4.2. Energy Independent Vehicles: definition and function
6.4.3. The EIV powertrain for land vehicles
6.4.4. EIV operational choices
6.4.5. Do not forget wind
6.4.6. Key EIV technologies
6.4.7. Stella Lux passenger car Netherlands
6.4.8. Sunswift eVe passenger car Australia
6.4.9. Resolution and EVA solar racers Cambridge University UK
6.4.10. Solar racer derivative: Immortus passenger car EIV Australia
6.4.11. POLYMODEL micro EV Italy
6.4.12. Venturi Eclectic passenger car Italy
6.4.13. Vinerobot micro EV France, Germany, Italy, Spain and Australia
6.4.14. Sold as Lizard EIV: NFH-H microbus China

7. SOME KEY EV POWERTRAIN DEVICES OF GENERAL USE
7.1. Introduction
7.2. Rotating electrical machines
7.2.1. One business land, water, air - hybrid and pure electric
7.2.2. Increase in number of rotating electrical machines per vehicle for traction
7.2.3. Trend to integration: transmission with electric motors
7.2.4. The main rotating machine options compared for traction
7.2.5. Reversible rotating machines for 48V mild hybrids
7.2.6. Rotating machines for strong hybrids and pure electric
7.2.7. Trend to in-wheel motors
7.2.8. Flywheel KERS
7.2.9. Flybrid KERS used by Wrightbus UK on hybrid buses
7.2.10. Volvo trial of mechanical flywheel KERS mechanical
7.2.11. Supplier view of mechanical flywheel KERS
7.3. Energy Storage
7.3.1. Options
7.4. Energy Storage Beyond Batteries
7.4.1. Overview
7.4.2. Operational principles: supercapacitors to batteries
7.4.3. Supercapacitors are often used across lithium-ion batteries
7.4.4. Possible future
7.5. Batteries
7.6. New forms of energy harvesting including regeneration
7.6.1. Overview
7.6.2. Complementarity of multiple harvesting
7.6.3. Example: regenerative suspension
7.7. Heavily downsized engines for primary power
7.7.1. Potential and approach
7.7.2. Mahle priorities
7.7.3. Compensating for performance reduction
7.7.4. Results
7.8. Lightweight multifunctional materials ""structural electronics""
7.8.1. Objectives
7.8.2. Design problems resulting
7.9. Increasing importance of power electronics
7.10. Interview with Professor Pietro Perlo 26 April 2016
7.11. Wrap up: everything is changing

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3675153/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/3675153/
Office Code: SCBRHWRJ

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5170</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5482 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7758</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 8070 + USD 58 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________
Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World