Electric Vehicle Traction Motors, Belt Driven & Integrated Starter Generators
2016-2026

Description:
Boost recuperation machines, motor generators, BSG, ISG for 48V MH, strong hybrid, pure electric, ELV: land, water, air.

As vehicles electrify to meet new emissions laws and improve economy and function there are added issues of cost, reliability, life and integration of the now more-complex rotating electrical machines REMs needed. Electricity handled is usually up at least fourfold. These REMs are increasingly doubling as both motor and generator in an increasingly versatile manner.

As a motor this can mean driving the wheels or propeller and both starting and boosting a downsized and downspeeded fuelled engine where there is one. As a generator it may be making electricity from the rotation of the engine and regenerative braking. It may also be receiving electricity from suspension and other recuperation and from energy storage, stopping, starting, boosting the engine with extra power when needed - a far more punishing regime than the traditional traction motor encounters though there is plenty of market for them as well.

The author explains the seven reasons for more than one REM per vehicle. Integrating other functions is another trend we analyse such as merging with power electronics and gearing, often in-wheel or in-propeller. REMs are now providing electricity for a rapidly increasing number of on-board devices as they proliferate and as existing devices are electrified for better efficiency, control, versatility and safety.

Voltage trends in EVs

These trends alter the value chain. It becomes tougher to sell just the motors. Markets open up for new devices. Developers have already taken $50 million at a time for proven new REM technologies. Vertical integration increases in the supply chain. It makes these systems a larger part of the cost of the vehicle and makes them contribute more to performance, consumer proposition and emission reduction so OEMs and Tier One suppliers are keener to create and own the IP and more is invested in development.

Flatter, smaller and/or more-efficient designs and smaller, cooler fuelled engines (or none at all) in the vehicles will reduce the cooling requirements. In a given REM system, mechanical parts become less of the cost and performance and electronics become more.

Advances may occur first in large vehicles because they are bought by organisations sensitive to total cost of ownership, performance and emissions. For example, most electric aircraft and tactical military electric vehicles already have more than one REM and the best-selling pure electric bus has two in-wheel motors. Now that will happen with best-selling cars. On the other hand, 48V mild hybrid cars will be commonplace with their "Boost Recuperation Machines" and "Integrated Starter Generators" before that technology migrates to vans, trucks and buses in any volume so we look widely to find best practice and see the future.

Electric car forecast

The author explains how REMs for converting traditional ICE powertrains to 48V mild hybrid. This is meet the onerous 2025 and 2030 emissions regulations that cannot be met by traditional ICE powertrains in C and D cars and larger vehicles but other benefits accrue. At a fraction of the cost, this gives most of the features of a strong hybrid that does not plug in, so potential is large.

To understand these complex trends, the author has used its PhD level globetrotting analysts who themselves lecture at the leading events, as respected participants in this rapidly growing industry. This report therefore has unusual insights and interviews not available to others and material just presented at events worldwide.

Only the author forecasts the global electric vehicle industry in 46 categories presented here by land, water and air. The main business is cars and buses and the emphasis of the report reflects that. Future winners and losers are identified among the powertrains and devices. The activities of over 160 participants is
detailed in what will be almost a trillion dollar EV business in ten years.

The report is in wide slide format with many new, detailed infographics aiding understanding and over 160 suppliers investigated.

Contents:

1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Focus of this report and primary trends
 1.1.1. Important trends
 1.1.2. Great improvements in traction motors with their controls are both needed and possible
 1.2. Example of multiple REM per vehicle
 1.3. Powertrain focus
 1.4. Motor-generator REM duty cycle, type, function
 1.5. Motor-generator REM improvements needed, number of manufacturers/developers
 1.6. REM technology
 1.6.1. Choices
 1.6.2. Technology preference by type of vehicle
 1.7. Market forecasts
 1.7.1. Type of powertrain for 46 types of electric vehicle
 1.8. Powertrain forecasts by 46 types of electric vehicle
 1.9. Rapidly increasing market for powertrain REMs for electric vehicles

2. INTRODUCTION
 2.1. Powertrains
 2.1.1. Typical powertrain components
 2.1.2. The show so far: adoption of electrified powertrains
 2.1.3. Hype curve for car powertrains in 2016
 2.2. Rotating electrical machines in powertrain
 2.2.1. Needs by type of powertrain
 2.2.2. Heart of a first generation 48V mild hybrid: BSG
 2.2.3. REM technologies performance in powertrains: the show so far
 2.3. One business land, water, air - hybrid and pure electric
 2.4. Trend to two or more REM per vehicle
 2.4.1. Reasons
 2.4.2. Innovative two motor formats: car, motorcycle
 2.5. Trend to product integration
 2.5.1. Strong hybrid cars
 2.5.2. Volkswagen approach to device integration
 2.5.3. Integration challenges of simulation of electric machines and inverters
 2.5.4. 48V mild hybrid integrated starter generators
 2.5.5. Two types of in-wheel motor
 2.5.6. In-wheel motors by size of vehicle, with examples, benefits sought and challenges.
 2.6. Trend to high voltage, high speed motors in strong hybrids, pure electric vehicles
 2.7. Flywheel KERS
 2.8. Trend to vertical integration in supply chain
 2.9. Motor Controls
 2.9.1. Overview
 2.9.2. Cost and integration issues

3. 48V MILD HYBRID BSG, ISG
 3.1. Why 48V?
 3.2. Where 48V mild hybrids fit in
 3.3. Motivation
 3.4. 48V mild hybrid system technology
 3.5. Evolution from stop-start to multifunctional rotating machines
 3.6. How to make a 48V mild hybrid in latest form for a car
 3.7. Toolkit for 48V mild hybrid powertrains
 3.8. The key components of the system options are mostly different
 3.9. Not just cars!
 3.10. Reversible rotating machine technology choices for 48V mild hybrids
 3.11. How Continental sees the asynchronous option
 3.12. Example of test beds for 48V REMs ADEPT project
 3.13. Best solutions for market needs 2016-2030: interviews
3.15. Modelling of 48V introduction using Volkswagen SUV data
3.16. Types of conventional and electric vehicle with those that have or will have many 48V systems shown in grey

4. ELECTRIC MOTORS, MOTOR-GENERATORS FOR STRONG HYBRIDS
4.1. Relative needs
4.2. Plug in option
4.3. Plug in hybrid potential in higher performance/ heavy vehicles
4.4. The Tesla approach to electric traction motors
4.4.1. Motor history to Tesla Model 3
4.4.2. Comparisons
4.4.3. Interview
4.5. Different views on usefulness of parallel hybrids in future: Siemens, Ricardo
4.6. Siemens typical hybrid system components based on automotive standard TS 16949
4.7. Ricardo view of long haul options
4.8. GKN advances in 2016
4.9. Roundup

5. ELECTRIC MOTORS, MOTOR-GENERATORS FOR PURE ELECTRIC VEHICLES
5.1. The end game
5.2. Voltage trends for pure electric vehicles
5.3. Great variety
5.4. Pure electric cars and similar vehicles
5.5. UAVs and multicopters
5.5.1. REMs
5.5.2. Drive electronics
5.6. Dyson robot vacuum cleaner
5.7. Energy Independent Vehicles EIV
5.7.1. Why we want more than mechanical energy independence
5.7.2. Energy Independent Vehicles: definition and function
5.7.3. The EIV powertrain for land vehicles
5.7.4. EIV operational choices
5.7.5. Do not forget wind
5.7.6. Key EIV technologies
5.7.7. Stella Lux passenger car Netherlands
5.7.8. Solar racer derivative: Immortus passenger car EIV Australia
5.7.9. POLYMODEL micro EV Italy
5.7.10. Lizard EIV wakes with the sun: NFH-H microbus China

6. EXAMPLES OF INTERVIEWS 2015-2016
6.1. Ongoing interviews USA, East Asia, Europe
6.2. ALABC/ILA London 12 Jan 2016
6.3. MAHLE March 2016
6.4. Visit to Controlled Power Technologies CPT Ltd UK

7. ANALYSIS OF 170 TRACTION MOTOR MANUFACTURERS

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3675850/

Order by Fax - using the form below

Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Electric Vehicle Traction Motors, Belt Driven & Integrated Starter Generators 2016-2026
Web Address: http://www.researchandmarkets.com/reports/3675850/
Office Code: SCH3QBRJ

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td>USD 5220</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td>USD 5535 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td>USD 7833</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td>USD 8148 + USD 58 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________
Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ___________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World