Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2016-2026

Description: Granular ten-year market forecasts, data-driven and quantitative application assessment, 40+ interview-based company profiles, revenue/investment/capacity by player, and more.

This report provides the most comprehensive and authoritative view of the topic, giving detailed ten-year market forecasts segmented by application and material type. The market forecasts are given in tonnage and value at the material level. Furthermore, this report includes compressive interview-based profiles of all the key players the industry, providing intelligence on the investment levels, expected future revenues, and the production capacity across the industry and by supplier. In addition, this report critically reviews all existing and emerging production process.

This report also gives detailed, fact-based and insightful analysis of all the existing and emerging target applications. For target applications, the report provides an assessment and/or forecast of the addressable markets, key trends and challenges, latest results and prototype/product launches, and insight on the market potential.

Unrivalled business intelligence and market insight

This report is based upon years of research and close engagement with the community of graphene and CNT producers, investors and users. In the past five years, we have interviewed and profiled almost all the graphene and carbon nanotube suppliers globally (>40), advised many investors and chemical companies on their graphene (and CNT) strategy, and guided many end-users.

In parallel to this, the author’s Research has organised seven international tradeshows and conferences on Graphene and 2D Materials. These commercial conferences have become the forum in which the latest innovations are announced and the latest products are launched. More importantly, they have become the premier international venue in which suppliers and users directly connect. This has given us an unrivalled access to all the players across the graphene/CNT community.

Analysts also travel the world extensively to attend and lecture at all the conferences and tradeshows relevant to graphene and CNTs, giving us further opportunity to get to know the industry well, and hear and interpret the latest developments. We are confident that our knowledge and insight into the technologies, markets and applications of graphene and 2D materials is without parallel the world over.

The graphene market to reach 3, 800 tonnes per year in 2026

Research projects that the graphene market will grow to $220m in 2026. This forecast is at the material level and does not count the value of graphene-enabled products. In many instances graphene is only an additive with low wt% values.

A continual decline in average sales prices will accompany the revenue growth, meaning that volume sales will reach nearly 3.8 k tpa (tonnes per annum) in 2026. Despite this, the authors forecasts suggest that the industry will remain in a state of over-capacity until 2021 beyond which time new capacity will need to be installed. Furthermore, Research forecasts that nearly 90% of the market value will go to graphene platelets (vs. sheets) in 2026.

The market will be segmented across many applications, reflecting the diverse properties of graphene. In general, we expect functional inks and coatings to reach the market earlier. This is a trend that we forecasted several years ago and is now observed in prototypes and small-volume applications. Indeed, Research projects that the market for functional inks and coatings will make up 21% of the market by 2018. Ultimately however, energy storage and composites will grow to be the largest sectors, controlling 25% and 40% of the market in 2026, respectively.

What this report provides:
1. Ten-year market forecasts for graphene and CNTs segmented by material type and application (by volume and value).

2. Investment, capacity and revenue by company.

3. Interview-based company profiles of 50 graphene and CNT companies.

4. Benchmarking of suppliers on the basis of technology readiness and medium-term commercial opportunity.

5. Market trends and dynamics including:
 a. Go-to-market strategy
 b. Prices and pricing strategy
 c. Product qualities and morphologies
 d. Consistency and quality issues
 e. Intermediary challenges
 f. Current and expected product launches
 g. Application timeline

6. Overview of the multi-walled carbon nanotube industry including:
 a. Production capacity by supplier
 b. Current applications and forecast application pipeline
 c. Segmented ten-year market projections
 d. Benchmarking and mapping key players

7. Detailed overview of production methods including:
 a. Oxidisation-reduction
 b. Direct liquid phase exfoliation
 c. Electrochemical exfoliation
 d. Plasma exfoliation
 e. Substrate-less plasma or CVD growth
 f. CVD growth of graphene sheets
 g. Epitaxial

8. Detailed application assessment often including the authors insight and assessment, state-of-the-art and commercial progress, analysis of competing technologies, pricing trends, addressable market size, and ten-year market projections for:
 a. Transparent conducting films
 b. Functional inks and pairs
 c. RFID antennas
 d. Anti-corrosion coatings
 e. Supercapacitors
 f. Silicon anode
 g. Li sulphur
 h. Li ion and other battery technologies
 i. Conductive, thermal, permeation or mechanically-enhanced composites
 j. Graphene and 2D materials for transistors
 k. Tires
 l. Sensors
 m. Anti-corrosion
 n. Water filtration

Contents:
1. Introduction
 1.1. There are many graphene types
 1.2. Many ways of producing graphene
 1.3. Explaining the main graphene manufacturing routes
 1.4. Morphologies of graphene on offer
 1.5. Market conditions, trends and outlook
 1.6. General observations on the market situation
 1.7. Moving past the peak of hype
 1.8. Supplier numbers on the rise
 1.9. Media attention and patent publications on the rise
1.10. Large scale investment in graphene research
1.11. Investment in graphene company formation
1.12. Revenue of graphene companies
1.13. The industry is still in the red
1.14. Initial public offerings
1.15. Information on supplier morphology, investment & revenue
1.16. The rise of China
1.17. China was successful in carbon nanotubes
1.18. Patent trends
1.19. Graphite mines see opportunity in graphene
1.20. Production capacity by player
1.21. The importance of intermediaries
1.22. Graphene Prices and Pricing Strategy
1.23. Quality and consistency issue
1.24. Graphene application pipeline
1.25. Graphene-enabled products and important prototypes
1.26. Benchmarking graphene suppliers

2. Market Projections
2.1. Granular ten year graphene market forecast
2.2. Ten year graphene market forecast
2.3. Forecast for graphene platelet vs sheets
2.4. Graphene market in 2019
2.5. Graphene market in 2026
2.6. Forecast for volume (MT) demand for graphene platelets

3. Graphene Production
3.1. Expanded graphite
3.2. Reduced graphene oxide
3.3. Oxidising graphite
3.4. Reducing graphene oxide
3.5. Direct liquid phase exfoliation
3.6. Direct liquid phase exfoliation under shear force
3.7. Electrochemical exfoliation
3.8. Properties of electrochemical exfoliated graphene
3.9. Plasma exfoliation
3.10. Substrate-less CVD
3.11. Substrate-less CVD (plasma)
3.12. Chemical vapour deposition (CVD)
3.13. Chemical vapour deposition
3.14. Transfer process for chemical vapour deposition
3.15. Roll-to-roll transfer of CVD graphene
3.16. Novel methods for transferring CVD graphene
3.17. Sony's approach to transfer of CVD process
3.18. Sony's CVD graphene approach
3.19. Wuxi Graphene Film Co's CVD graphene progress
3.20. Direct growth of CVD on SiOx?
3.21. Production cost of CVD graphene
3.22. Epitaxial
3.23. Largest single-crystalline graphene reported ever

4. Graphene Materials
4.1. Pictures of graphene materials

5. Graphene Applications And Markets

6. Transparent Conductive Films
6.1. Indium Tin Oxide
6.2. Market forecast for transparent conducting films
6.3. Performance of ITO films on the market
6.4. Production cost and flexibility of ITO films
6.5. Supply and demand for ITO films and indium
6.6. Changing TCF market dynamics and needs
6.7. Assessment of ITO alternatives
6.8. Graphene performance as TCF
6.9. SWOT analysis on graphene TCFs
6.10. Performance of silver nanowire TCFs
6.11. Flexibility of silver nanowire TCFs
6.12. Silver nanowire TCF cost structure
6.13. Silver nanowire products on the market
6.14. Metal mesh TCF performance
6.15. Flexibility of metal mesh TCFs
6.16. Performance of carbon nanotube TCFs
6.17. Useful information on carbon nanotube TCFs
6.18. Benchmarking TCF technologies
6.19. Make or break year for ITO alternatives?
6.20. Consolidation period for the ITO alternative market
6.21. ITO alternative ten-year market forecast

7. Graphene Conductive Inks
7.1. Performance of Graphene conductive inks
7.2. Applications of conductive graphene inks
7.3. Resistive heating using graphene inks
7.4. De-frosting using graphene inks
7.5. De-icing using graphene heaters
7.6. Transparent EMI shielding
7.7. Graphene-enabled products and important prototypes
7.8. Graphene inks can be highly opaque
7.9. RFID types
7.10. RFID antenna market figures
7.11. RFID antennas
7.12. Cost breakdown of RFID tags
7.13. Methods of producing RFID antennas

8. Supercapacitors
8.1. Ten-year market forecast for supercapacitors by application
8.2. Application pipeline for supercapacitors
8.3. Cost structure of a supercapacitor
8.4. Cost breakdown of supercapacitors
8.5. Supercapacitor electrode mass in transport applications
8.6. Addressable market forecast for supercapacitor electrodes
8.7. Supercapacitor performance using nanocarbons
8.8. Performance of existing commercial supercapacitors
8.9. Challenges with graphene
8.10. Graphene surface area is far from the ideal case
8.11. Promising results on graphene supercapacitors
8.12. Performance of carbon nanotube supercapacitors
8.13. Potential benefits of carbon nanotubes
8.14. Challenges with the use of carbon nanotubes
8.15. Electrode chemistries of supercapacitor suppliers

9. Energy Storage
9.1. Historical progress in Li ion batteries
9.2. Quantitative benchmarking of Li and post-Li ion batteries
9.3. Quantitative benchmarking of Li and post-Li ion batteries
9.4. EV numbers used in this projections
9.5. Electrode mass by battery type
9.6. Cost breakdown of Li ion batteries
9.7. LFP cathode improvement
9.8. Why graphene and carbon black are used together
9.9. Graphene improves NCM battery cathode
9.10. LiTiOx anode Improvement
9.11. How CNT improve the performance of commercial Li ion batteries
9.12. Why graphene helps in Si anode batteries
9.13. State of the art in silicon-graphene anode batteries
9.14. Samsung's result on Si-graphene batteries
9.15. State of the art in silicon-graphene anode batteries
9.16. Why graphene helps in Li sulphur batteries
9.17. State of the art in use of graphene in Li Sulphur batteries
9.18. Graphene battery announcement
9.19. Graphene-enabled products and important prototypes

10. Composites
10.1. General observation on using graphene additives in composites
10.2. Commercial results on graphene conductive composites
10.3. Conductive composites
10.4. EMI Shielding
10.5. How do CNTs do in conductive composites
10.6. CNT success in conductive composites
10.7. Examples of products that use CNTs in conductive plastics
10.8. Young's Modulus enhancement
10.9. Commercial results on permeation graphene improvement
10.10. Permeation Improvement
10.11. Thermal conductivity improvement
10.12. Commercial results on thermal conductivity improvement using graphene
10.13. Thermal conductivity improvement using graphene

11. Graphene And 2D Materials For Transistors
11.1. Performance of graphene transistors
11.2. Graphene transistor based on work function modulation
11.3. Other 2D materials are better at creating transistor functions
11.4. Mobility of 2D materials as a function of bandgap
11.5. Suitability of 2D materials for large-area flexible devices
11.6. Effect of growth method on mobility

12. Tires
12.1. Graphene as additive in tires
12.2. Progress on graphene-enabled bicycle tires
12.3. Carbon black in tires
12.4. Black carbon in car tires
12.5. There are many types of black carbon
12.6. CNT and graphene are the least ready emerging tech for tire improvement
12.7. Results on use of graphene in silica loaded tires
12.8. Comments on CNT and graphene in tires
12.9. Total addressable market for graphene in tires

13. Sensors
13.1. Graphene GFET sensors
13.2. Fast graphene photosensor
13.3. Graphene humidity sensor
13.4. Optical brain sensors using graphene
13.5. Graphene skin electrodes
13.6. Wearable stretch sensor using graphene

14. Other Applications
14.1. Anti-corrosion coating
14.2. Water filtration
14.3. Lockheed Martin's water filtration
14.4. Graphene-enhanced condoms?
14.5. Future applications

15. Review Of Progress With Carbon Nanotubes
15.1. Carbon nanotubes- the big picture
15.2. Carbon nanotubes are more mature than graphene
15.3. Carbon nanotubes prices are falling
15.4. Already commercial applications of CNTs
15.5. Application Timeline
15.6. Production capacity of carbon nanotubes
15.7. Loss of differentiation in CNTs
15.8. Differentiating between CNTs and graphene
15.9. Will the CNT industry consolidate?
15.10. Player dynamics in the CNT business
15.11. Ten-year market forecast for MWCNTs

16. Interview Based Company Profiles
16.1. Abalonyx AS
16.2. Advanced Graphene Products
16.3. Anderlab Technologies Pvt. Ltd.
16.4. Angstron Materials
16.5. Applied Graphene Materials
16.6. Arkema
16.7. Bayer MaterialScience AG (now left the business)
16.8. Bluestone Global Tech
16.9. C3Nano
16.10. Cabot Corporation
16.11. Cambridge Nanosystems
16.12. Canatu
16.13. Charmtrion Inc
16.14. CNano Technology
16.15. CrayonNano
16.16. Directa Plus
16.17. g2o
16.18. Gnanomat
16.19. Grafen Chemical Industries
16.20. Grafentek
16.21. Grafoil
16.22. Graphenano
16.23. Graphene 3D Lab
16.24. Graphene Frontiers
16.25. Graphene Laboratories, Inc
16.26. Graphene Square
16.27. Graphene Technologies
16.28. Graphenea
16.29. Group NanoXplore Inc.
16.30. Grupo Antolin Ingenieria
16.31. Incubation Alliance
16.32. Jinan Moxi New Material Technology
16.33. Nanjing JCNANO Technology
16.34. Nanocyl
16.35. NanolInnova
16.36. Nanointegris
16.37. Nantero
16.38. OCSIAl
16.39. OneD Material LLC
16.40. Perpetuus Graphene
16.41. Poly-Ink
16.42. Pyrograf Products
16.43. Raymor Industries, Inc.
16.44. Showa Denko K.K
16.45. SiNode Systems
16.46. Skeleton Technologies
16.47. SouthWest NanoTechnologies, Inc.
16.48. The Sixth Element
16.49. Thomas Swan
16.50. Timesnano
16.51. Unidym Inc
16.52. Vorbeck Materials
16.53. Wuxi Graphene Film
16.54. XFNANO
16.55. XG Sciences, Inc.
16.56. Xiamen Knano
16.57. XinNano Materials Inc
16.58. Xolve, Inc
16.59. Zyvex

17. Company Profiles
17.1. 2D Carbon Graphene Material Co., Ltd
17.2. Airbus, France
17.3. Aixtron, Germany
17.4. AMO GmbH, Germany

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3680192/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Graphene, 2D Materials and Carbon Nanotubes: Markets, Technologies and Opportunities 2016-2026
Web Address: http://www.researchandmarkets.com/reports/3680192/
Office Code: SCH3186W

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td>USD 5220</td>
</tr>
<tr>
<td></td>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td>USD 5535 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td></td>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td>USD 7833</td>
</tr>
<tr>
<td></td>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td>USD 8148 + USD 58 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: | Mr ☐ | Mrs ☐ | Dr ☐ | Miss ☐ | Ms ☐ | Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________
Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information
Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World