
Description: The objective of this report is to examine the U.S. market for High and Extra High Voltage Transformers in terms of the risk and impact of Solar Storms and EMP Attacks. The thesis of this report is that the U.S. is not prepared in the event of a major Solar Storm or EMP attack to quickly restore the electric grid, due to its inability to replace High and Extra High Voltage transformers. High and Extra High Voltage transformers are the most critical component of the U.S. electrical infrastructure. There are thousands of High Voltage transformers installed in the United States today, but only a small number of these are very large units rated 345 kV and above. The market for these transformers is very small and imports accounted for most of U.S. consumption of these products in 2015. Further increasing the risk, there are only a few Extra High Voltage transformers available as spares.

Finally, there are only a small number of U.S companies still producing High and Extra High Voltage transformers. The other suppliers are foreign companies operating U.S. plants. In other words, the U.S. can no longer supply most of its High and Extra High Voltage transformer needs, and if there was a major Solar Storm or EMP Attack, there are only enough spares to replace a small percent of the installed base. As a result, in the event of a major Geomagnetic Storm or EMP Attack, the U.S. will not be able to restore its electric grid for months to years.

Key information presented in this report includes analysis of:

- Critical Infrastructure Protection.
- U.S. Energy Sector.
- U.S. Electric Power System.
- High Voltage Transformers.
- High-Impact, Low-Frequency Events.
- Solar Storms.
- EMP Attacks.
- U.S. Extra High Voltage Transformer Installed Base.
- Investment Trends in U.S. Transmission Infrastructure.
- U.S. High and Extra High Voltage Transformer Market.
- Profiles of U.S. based producers of High and Extra High Voltage transformers.

Contents:

1. Introduction
 - Report Objectives
 - Methodology and Sources
 - Statistical Notes

2. Critical Infrastructure Protection
 - Current Status
 - Presidential Policy Directive 21
 - 2009 NIPP Evolution
 - Key Concepts
 - Critical infrastructure
 - Risk Environment
 - Strategic National Risk Assessment
 - Policy Environment
 - Critical Infrastructure Sectors
 - Executive Order 13636
 - PPD-8
 - Operating Environment
 - Deteriorating Critical Infrastructure Systems
 - Distributed Ownership Issues
- Partnership Structures
- Sector and Cross-Sector Councils
- Sector-Specific Agencies
- Federal and State Regulatory Agencies
- Critical Infrastructure Owners and Operators
- Protective Security Advisors

- U.S. Energy Sector Assets
- Electricity
- Electricity Generation
- Electricity Transmission, Distribution and Control Systems
- Transmission Lines
- Transmission and Distribution Substations
- Control Centers
- Distribution Lines
- Control Systems
- Smart Grid Technologies
- North American Electric Power Grid System
- Electric Generation and Transmission Information

- World's Largest Integrated Machine
- Diverse Ecosystem
- Widespread Technological Differences
- Power Delivery System Components
- Reliability Issues
- Dynamic Control
- System Protections
- System Interconnections
- Increased Operational Complexity
- Increased Digital Technology
- Regulatory Activities
- State Regulatory Commissions
- Federal Energy Regulatory Commission
- Normal Disturbances in System Operations
- Causes of Disruptions
- Power System Choke Points and Vulnerabilities
- Points of Vulnerability
- Ukraine Cyber-attacks and Blackouts

5. High Voltage Transformers
- Definition
- High Voltage Transformers End-Users
- Average Age of Installed Base
- High Voltage Transformers in the Electric Grid
- High Voltage Transformer Functions
- Voltage Management in the U.S. Power System
- Physical Characteristics of High Voltage Transformers
- High Voltage Transformer Manufacture
- High Voltage Transformer Cost
- Transportation
- Raw Materials Used in High Voltage Transformers
- High Voltage Transformers Installed in the United States
- Critical Nature of High Voltage Transformers
- Physical Vulnerability of High Voltage Transformers
- Targeting of High Voltage Transformers
- Physical Security Measures for High Voltage Transformers
- Sector Initiatives for High Voltage Transformer Security
- Coordination and Information Sharing
- Electricity Subsector Coordinating Council
- Energy Sector Government Coordinating Council
- Electricity Sector Information Sharing and Analysis Center
- Critical Infrastructure Protection Committee
- DOE's Energy Sector-Specific Plan
- ESCC's Critical Infrastructure Strategic Roadmap
- Transformer Equipment Programs
- DHS Recovery Transformer Program (RecX)
- EEI Spare Transformer Equipment Program
- NERC Spare Equipment Database
- Grid Security Exercises and Simulations
- GridEx and GridEx II
- FERC Electrically Significant Locations Study
- High Voltage Transformer Security Standards
- IEEE Substation Security Standard
- NERC Physical Security Guidance
- FERC Physical Security Best Practices
- NERC Physical Security Regulations
- Company-Specific Initiatives
- Identifying Critical Transformers
- Confidentiality of Critical Transformer Information

6. High-Impact, Low-Frequency Events
- North America's Most Critical Infrastructure
- High-Impact, Low-Frequency Events
- Understanding HILF Risk
- Placing HILF Risk in Context
- Geomagnetic and Electromagnetic Events
- Geomagnetic Disturbances
- Electromagnetic Weapons

7. Solar Storms
- Overview
- Solar Cycles
- Sunspot Cycles and Geomagnetic Storms
- K-Index
- Electric Power System Is Most Critical Infrastructure
- EHV Infrastructure Growth
- Increased Network Voltage
- Increased Power System Vulnerability
- Risk Hyperbole Not Helpful
- Geo-Magnetic Disturbances Sequence of Events
- Geo-Magnetically Induced Currents Chain of Events
- Operations Impact of a Large Geo-Magnetic Disturbance
- Geo-Magnetic Storms Per Solar Cycle
- Past Major GMD Impacts
- Hydro Québec System 1989
- Sweden and South Africa 2003
- July 2012
- May 1921
- Carrington Event
- Other Adverse Impacts
- NERC Activities
- NERC Actions and Initiatives
- Spare Transformer Initiatives
- Electric Power Research Institute Initiatives
- Space Weather Infrastructure
- Space Weather Prediction Center
- Space Weather Forecasting Capabilities and Limitations
- GIC Monitoring
- EPRI Sunburst Network
- Solar Shield
- NERC GMD Alert Dissemination
- SWPC Alerts, Warnings, Watches
- NERC Alert Dissemination
- U.S. Space Weather Strategy and National Space Weather Action Plan
- Action Plan Structure
- Metatech Studies
- High Voltage Transformer Half-Cycle Saturation
- Potential Impacts If the 1921 GMD Occurred Today
- Impacts and System Vulnerabilities
- IEEE Power & Energy Society Transformers Committee

8. Electromagnetic Pulse Attacks
- Electromagnetic Pulses
- Nuclear EMP
- Non-Nuclear EMP
- HEMP Weapons
- E1 Pulse
- E3 Pulse
- E3 HEMP Environment
- E3A Blast Wave
- E3B Heave Effect
- Low Altitude Bursts
- Transformers and E3 HEMP Geomagnetically Induced Current
- Evolving Vulnerability of Electric Power Grids
- Potential Impacts to EHV Transformers Due to E3 Threats
- New York Region E3 Event
- Is the HEMP Threat Fiction
- HEMP Weapons Proliferation
- High Power Microwaves
- Electromagnetic Bombs
- Flux Compression Generator and Vircator Characteristics
- E-Bomb Proliferation
- EMP Weapons Threat Assessment
- HEMP-Induced Blackout
- EMP Hardening Techniques
- Priorities for EMP Hardening
- Development of EMP-Resistant Manufacturing Standards

9. U.S. High and Extra High Voltage Transformers Installed Base
- Extra High Voltage Total Transformers and Total Spares Installed
 - 345 kV Installed Base
 - 450-525 kV Installed Base
 - 765 kV Installed Base

10. Investment Trends In U.S. Transmission Infrastructure
- Role and Physical Characteristics of U.S. Transmission System
- Historical and Projected Transmission Investments
- Transmission vs. Other Electric Utility Investments
- Circuit-Mile Additions
- Replacing and Upgrading Aging Transmission
- Renewables Additions to Meet RPS and the CPP Will Drive Transmission Investment
- Transmission Investments Driven by Coal Retirements
- Coal Retirements: Key Uncertainties Remain
- Projected Transmission Investment Opportunities
- Emerging Non-Incumbent Business Models
- Recent High Voltage Transmission Projects
- Outlook

11. U.S. High and Extra High Voltage Transformer Market
- Market Segments
- U.S. Electric Utility Transformer Production by Class and Voltage Rating
- U.S. Electric Utility Transformer Production by Power Rating
- U.S. Electric Utility Transformer Imports by Class and Voltage Rating
- U.S. Electric Utility Transformer Imports by Power Rating
- U.S. Electric Utility Transformer Exports by Class and Voltage Rating
- U.S. Electric Utility Transformer Exports by Power Rating
- U.S. Electric Utility Transformer Consumption by Class and Voltage Rating
- U.S. Electric Utility Transformer Consumption by Power Rating
- U.S. Electric Utility High Voltage Transformer Consumption
- U.S. Electric Utility Extra High Voltage Transformer Consumption
- U.S. Now Totally Dependent on Imports of Electric Utility High Voltage and Extra High Voltage Transformers
- U.S. Electric Utility High Voltage and Extra High Voltage Transformer Market Value ($ Million), Market Volume (Units), Power (MVA), Average Selling Price ($/Unit), Growth Rate: 2015-2020
- Competitive Environment

12. Company Profiles
- ABB Ltd
- Delta Star, Inc.
- EFACEC Engenharia, S.A
- Hyundai Power Transformers USA.
- Mitsubishi Electric Power Products Inc.
- Pennsylvania Transformer Technology Inc.
- SPX Corporation
- Virginia Transformer Corp.

List of Tables:
1. United States Critical Infrastructure Sectors
2. Sector-Specific Agencies and Critical Infrastructure Sectors
4. Major Industry Players in the U.S. Electric Industry by Class
5. Transmission Voltage Classes
6. K Index, G Scale, and Severity of Potential Power System Impacts
7. EMP Weapons Threat Assessment
8. Number of Transformers and Spare Transformers by Individual U.S. Utility Holding/Operating Companies Rated at 345 kV and Above (Unit. and Market Share (%): 2014
9. Number of Transformers and Spare Transformers by Substation at Individual U.S. Utility Holding Companies and Their Individual Operating Companies Rated at 345 kV and Above by Voltage Rating (Units): 2014
10. AEP Transformers and Spare Transformers by Operating Companies and Substation Location Rated at 345 kV and Above by Voltage (Units): 2014
11. Number of Transformers and Spare Transformers by Individual U.S. Utility Holding Companies Rated at 345 kV (Unit. and Market Share (%): 2014
12. Number of Transformers and Spare Transformers by Individual U.S. Utility Holding Companies Rated at 450-525kV (Unit. and Market Share (%): 2014
13. Number of Transformers and Spare Transformers (Unit. by Individual U.S. Utility Holding Companies Rated at 765 kV (Unit. and Market Share (%): 2014
17. Non-incumbent Transmission Developers Business Models
29. U.S. Electric Utility High Voltage and Extra High Voltage Transformer Market Value ($ Million), Market Volume (Units), Market Power (MVA), Average Selling Price ($/Unit): 2015
30. U.S. Electric Utility High Voltage and Extra High Voltage Transformer Market Value ($ Million), Market Volume (Units), Market Power (MVA), Average Selling Price ($/Unit): 2020
31. U.S. Electric Utility High Voltage and Extra High Voltage Transformer Market Value ($ Million), Market Volume (Units), Market Power (MVA), Average Selling Price ($/Unit. Growth Rate: 2015-2020
33. U.S. High Voltage and Extra High Voltage Transformer Suppliers Sales ($ Million) and Market Shares (%): 2015

List of Figures:
1. Evolving Threats to U.S. Critical Infrastructure
2. Sector and Cross-Sector Coordinating Structures
3. U.S. Protective Security Advisor Locations by Region, State, City and Type
4. Overview of the U.S. Electric Power System and Control Communications
5. U.S. Primary Energy Consumption by Source and Sector (Quadrillion Btu): 2014
6. North America Power Grids
7. NERC Interconnections
8. U.S. Electrical Transmission Network Map by Voltage and Substations
10. 345 kV Transformer Installation
11. Core-Type High Voltage Transformer Showing Major Internal Components
12. High Voltage Transformer Procurement Process and Estimated Lead Times by Stage
13. Transport of a High Voltage Transformer
14. Schnabel Car Transporting a High Voltage Transformer
15. 400 Years of Sunspot Observations
16. Sunspot Cycles and the Occurrence and Intensity (Ap inde. of Large Geomagnetic Storms
18. U.S. High Voltage Transmission Network by Voltage Level (345kV, 500kV, 765kV and State
19. Transmission Line Resistance (Ohms/k. by kv Rating in the U.S.
20. Coronal Mass Ejections Observed Using Coronagraphs on NASA SOHO and STEREO Spacecraft
22. Geo-Magnetic Effects on Electric Power Grids
23. SWPC information Dissemination
24. One Hundred Year Geomagnetic Storm G50 Degrees Geomagnetic Disturbance Scenario
25. Map Showing the At-Risk EHV Transformer Capacity by State for 50 Degree Geomagnetic Latitude Disturbance Scenario
26. Schematic of Various Phases of HEMP
27. Schematic of E3B Heave Phenomenology
28. Transformer MVAR Increase vs. GIC for 500kV Single Phase and 3 Phase, 3 Legged Core Form
29. Transformer MVAR Increase vs. GIC for 345kV, 500kV and 765kV Transformers
30. Installed Base Estimates of U.S. 345kV Transformers: Single Phase vs. 3 Phase (%)
31. Installed Base Estimates of U.S. 500kV transformers: Single Phase vs. 3 Phase (%)
32. Installed Base Estimates of U.S. 765kV transformers: Single Phase vs. 3 Phase (%)
33. New York Region: Location of Transformers at Risk for GIC of 200 Amps or Greater Per Phase
34. NY Region MVA Ratios of At Risk Transformers by Winding Types/Voltages (%)
35. U.S. Transmission Lines Greater Than 200 kV and Ownership by Type of Entity (%): 2015
37. U.S. Transmission vs. Other Electric Utility Investment by Type ($ Billion): 2012-2013
38. Investor-Owned Utility Capital Expenditures by Type ($ Billion): 2014-2017
40. Historical and Projected Circuit Miles Replaced/Upgraded and Total Projected Investment by Age ($ Million): 1990-2040
41. Forecast U.S. Transmission Investment and Variables Per Decade Through 2030 ($ Billion)

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3719507/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit

http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/3719507/
Office Code: SCBRGH1J

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td>USD 4800</td>
</tr>
<tr>
<td>Electronic (PDF) - Site License</td>
<td>USD 7200</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td>USD 9600</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___ Last Name: ___
Email Address: * _______________________________________
Job Title: __
Organisation: ___
Address: __
City: __
Postal / Zip Code: ____________________________________
Country: __
Phone Number: _______________________________________
Fax Number: ___

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp