Nanosensors for Chemical and Biological Applications

Description: Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development.

Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting nanoparticles in the environment.

Nanosensors for Chemical and Biological Applications serves as a standard reference for R&D managers in a range of industrial sectors, including nanotechnology, electronics, biotechnology, magnetic and optical materials, and sensors technology, as well as researchers and academics with an interest in these fields.

- Reviews the range electrochemical nanosensors, including the use of carbon nanotubes, glucose nanosensors, chemiresistor sensors using metal oxides, and nanoparticles
- Discusses spectrographic nanosensors, such as surface-enhanced Raman scattering (SERS) nanoparticle sensors, the use of coated gold nanoparticles, and semiconductor quantum dots

Contents:

Contributor contact details

Woodhead Publishing Series in Electronic and Optical Materials

Introduction

Part I: Electrochemical nanosensors

1. Chemical and biological sensing with carbon nanotubes (CNTs)

Abstract:

1.1 Introduction

1.2 Synthesis of carbon nanotubes (CNTs)

1.3 Functionalization of CNTs

1.4 Biosensors based on multi-walled carbon nanotubes (MWCNTs)

1.5 Technical and industrial challenge for the integration of CNTs in analytical and bioanalytical devices

1.6 Conclusion and future trends

1.7 References

2. Electrochemical nanosensors for blood glucose analysis

Abstract:

2.1 Introduction

2.2 Nanosized materials: enzymatic detection of glucose
2.3 Nanosized materials: direct detection of glucose
2.4 Nanosized sensors
2.5 Conclusion and future trends
2.6 Sources of further information and advice
2.7 References

3. Nanoparticle modified electrodes for trace metal ion analysis

Abstract:
3.1 Introduction
3.2 Nanoparticle modified electrodes: basic principles
3.3 Electroanalytical applications of nanoparticle modified electrodes: detection of arsenic
3.4 Electroanalytical applications of nanoparticle modified electrodes: detection of chromium
3.5 Electroanalytical applications of nanoparticle modified electrodes: detection of lead (II) and cadmium (II)
3.6 Electroanalytical applications of nanoparticle modified electrodes: detection of antimony
3.7 Conclusion
3.8 Sources of further information and advice
3.9 References

4. Interfacing cells with nanostructured electrochemical sensors for enhanced biomedical sensing

Abstract:
4.1 Introduction
4.2 Designing and constructing nanostructured surfaces for cellular sensing
4.3 Electrochemical sensing using nanoelectronic sensing devices
4.4 Interfacing nanostructured sensors for extracellular sensing
4.5 Interfacing amperometric nanostructured sensors with cells for bioelectricity and biomolecule detection
4.6 Interfacing nanostructured sensors for intracellular sensing
4.7 Conclusion
4.8 References

5. Chemiresistor gas sensors using semiconductor metal oxides

Abstract:
5.1 Introduction
5.2 The development of semiconductor metal oxide gas sensors
5.3 The gas-sensing process in semiconductor metal oxide sensors
5.4 Gas sensors using novel low dimensional metal oxides
5.5 Metal oxide nanostructure surface modification and doping

5.6 Recent developments and future trends

5.7 Sources of further information and advice

5.8 References

6. Electropolymers for (nano-)imprinted biomimetic biosensors

Abstract:

6.1 Introduction

6.2 Potential and limitations of molecularly imprinted polymers (MIPs)

6.3 Preparation and performance of molecularly imprinted electropolymers

6.4 Combination of analyte-binding MIPs with nanomaterials

6.5 Integration of analyte recognition with catalysis in MIPs

6.6 Conclusion and future trends

6.7 References

7. Nanostructured conducting polymers for electrochemical sensing and biosensing

Abstract:

7.1 Introduction

7.2 Hard-template synthesis of conducting polymer nanomaterials

7.3 Soft-template synthesis of conducting polymer nanomaterials

7.4 Physical methodologies for synthesis of conducting polymer nanomaterials

7.5 Chemical and biological sensing applications: nanofilms

7.6 Chemical and biological sensing applications: nanoparticle based sensors

7.7 Chemical and biological sensing applications: metallic nanoparticles (NPs), carbon nanotubes (CNTs) and conducting polymer composites

7.8 Chemical and biological sensing applications: nanowires and nanotubes

7.9 Chemical and biological sensing applications: nanofibres, nanocables and other conducting polymer structures

7.10 Conclusion

7.11 References

Part II: Spectrographic nanosensors

8. Surface-enhanced Raman scattering (SERS) nanoparticle sensors for biochemical and environmental sensing

Abstract:

8.1 Introduction: Raman scattering
8.2 Surface-enhanced Raman scattering (SERS)
8.3 SERS-active substrates
8.4 Conclusion
8.6 Acknowledgements
8.5 Sources of further information and advice
8.7 References

9. The use of coated gold nanoparticles in high performance chemical sensors
Abstract:
9.1 Introduction
9.2 Synthesis of gold nanoparticle materials
9.3 Nanoparticle coatings
9.4 Modeling chemical sensing behavior
9.5 Other forms of gold nanoparticle chemical sensors
9.6 Conclusion and future trends
9.7 Sources of further information and advice
9.8 References

10. Nanoporous silicon biochemical sensors
Abstract:
10.1 Introduction
10.2 Synthesis of mesoporous silica materials and enzyme encapsulation
10.3 Application to enzymatic sensor and detection mechanism
10.4 Development of enzymatic sensor for formaldehyde detection
10.5 Conclusion
10.6 References

11. Semiconductor quantum dots in chemical sensors and biosensors
Abstract:
11.1 Introduction
11.2 Quantum dots (QDs): synthesis and optical properties
11.3 Bioconjugation and capping strategies
11.4 Applications of QDs to biosensors
11.5 Conclusion and future trends
12. Nanosensors and other techniques for detecting nanoparticles in the environment

Abstract:

12.1 Introduction

12.2 Overview of nanomaterials

12.3 The regulatory context

12.4 Analytical methodology: measurements of nanoparticles (NPs) in environmental media

12.5 Analytical methodology: detection and size distribution

12.6 Analytical methodology: chemical composition and quantification

12.7 Applications

12.8 Conclusion and future trends

12.9 Sources of further information and advice

12.10 Acknowledgements

12.11 References

Index

Ordering:

Order Online - http://www.researchandmarkets.com/reports/3744458/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Nanosensors for Chemical and Biological Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3744458/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCPL9OR1</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy</td>
</tr>
<tr>
<td>(Paper back):</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>USD 199 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World