Quantum Optics with Semiconductor Nanostructures

Description: An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.

Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and microcavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.

With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students.

- A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics
- Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures
- Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena

Contents:

Part 1 Single quantum dot systems: Resonance fluorescence emission from single semiconductor quantum dots coupled to high-quality microcavities
Quantum optics with single quantum dots in photonic crystal cavities
Modelling single quantum dots in microcavities. Part 2 Nanolasers with quantum dot emitters
Highly efficient quantum dot micropillar lasers
Photon correlations in semiconductor nanostructures
Emission properties of photonic crystal nanolasers
Deformed wavelength-scale microdisk lasers with quantum dot emitters. Part 3 Light-matter interaction in semiconductor nanostructures: Photon statistics and entanglement in phonon-assisted quantum light emission from semiconductor quantum dots
Luminescence spectra of quantum dots in microcavities
Photoluminescence from a quantum-dot-cavity system
Quantum optics with quantum dot and quantum well systems. Part 4 Semiconductor cavity quantum electrodynamics (QED): All-solid-state quantum optics employing quantum dots in photonic crystals
One-dimensional photonic crystal nanobeam cavities
Growth of II-VI and group-III quantum-dot microcavity systems. Part 5 Ultrafast phenomena: Femtosecond quantum optics with semiconductor nanostructures
Coherent optoelectronics with quantum dots.

Ordering:

Order Online - http://www.researchandmarkets.com/reports/3744507/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Quantum Optics with Semiconductor Nanostructures
Web Address: http://www.researchandmarkets.com/reports/3744507/
Office Code: SCH3FX45

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hard Copy (Paper back)</th>
<th>USD 257 + USD 29 Shipping/Handling</th>
</tr>
</thead>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ____________________________
Last Name: _____________________________
Email Address: *
Job Title: _____________________________
Organisation: __________________________
Address: ______________________________
City: _________________________________
Postal / Zip Code: _____________________
Country: ______________________________
Phone Number: _________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World