Handbook of Membrane Reactors

Description: Membrane reactors are increasingly replacing conventional separation, process and conversion technologies across a wide range of applications. Exploiting advanced membrane materials, they offer enhanced efficiency, are very adaptable and have great economic potential. There has therefore been increasing interest in membrane reactors from both the scientific and industrial communities, stimulating research and development. The two volumes of the Handbook of membrane reactors draw on this research to provide an authoritative review of this important field.

Volume 1 explores fundamental materials science, design and optimisation, beginning with a review of polymeric, dense metallic and composite membranes for membrane reactors in part one. Polymeric and nanocomposite membranes for membrane reactors, inorganic membrane reactors for hydrogen production, palladium-based composite membranes and alternatives to palladium-based membranes for hydrogen separation in membrane reactors are all discussed. Part two goes on to investigate zeolite, ceramic and carbon membranes and catalysts for membrane reactors in more depth. Finally, part three explores membrane reactor modelling, simulation and optimisation, including the use of mathematical modelling, computational fluid dynamics, artificial neural networks and non-equilibrium thermodynamics to analyse varied aspects of membrane reactor design and production enhancement.

With its distinguished editor and international team of expert contributors, the two volumes of the Handbook of membrane reactors provide an authoritative guide for membrane reactor researchers and materials scientists, chemical and biochemical manufacturers, industrial separations and process engineers, and academics in this field.

- Considers polymeric, dense metallic and composite membranes for membrane reactors
- Discusses ceramic and carbon for membrane reactors in detail
- Reactor modelling, simulation and optimisation is also discussed

Contents:
- Contributor contact details
- Woodhead Publishing Series in Energy
- Foreword
- Preface
- Part I: Polymeric, dense metallic and composite membranes for membrane reactors
 - Chapter 1: Polymeric membranes for membrane reactors
 - Abstract:
 1.1 Introduction: polymer properties for membrane reactors
 1.2 Basics of polymer membranes
 1.3 Membrane reactors
 1.4 Modelling of polymeric catalytic membrane reactors
 1.5 Conclusions
 1.7 Appendix: nomenclature
 - Chapter 2: Inorganic membrane reactors for hydrogen production: an overview with particular emphasis on dense metallic membrane materials
Abstract:

2.1 Introduction

2.2 Development of inorganic membrane reactors (MRs)

2.3 Types of membranes

2.4 Preparation of dense metallic membranes

2.5 Preparation of Pd-composite membranes

2.6 Preparation of Pd-Ag alloy membranes

2.7 Preparation of Pd-Cu alloy composite membranes

2.8 Preparation of Pd-Au membranes

2.9 Preparation of amorphous alloy membranes

2.10 Degradation of dense metallic membranes

2.11 Conclusions and future trends

2.12 Acknowledgements

2.14 Appendix: nomenclature

Chapter 3: Palladium-based composite membranes for hydrogen separation in membrane reactors

Abstract:

3.1 Introduction

3.2 Development of composite membranes

3.3 Palladium and palladium-alloy composite membranes for hydrogen separation

3.4 Performances in membrane reactors

3.5 Conclusions and future trends

3.6 Acknowledgements

3.8 Appendix: nomenclature

Chapter 4: Alternatives to palladium in membranes for hydrogen separation: nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes

Abstract:

4.1 Introduction

4.2 Materials

4.3 Membrane synthesis and characterization

4.4 Applications

4.5 Conclusions

4.7 Appendix: nomenclature
Chapter 5: Nanocomposite membranes for membrane reactors

Abstract:

5.1 Introduction

5.2 An overview of fabrication techniques

5.3 Examples of organic/inorganic nanocomposite membranes

5.4 Structure-property relationships in nanostructured composite membranes

5.5 Major application of hybrid nanocomposites in membrane reactors

5.6 Conclusions and future trends

5.8 Appendix: nomenclature

Part II: Zeolite, ceramic and carbon membranes and catalysts for membrane reactors

Chapter 6: Zeolite membrane reactors

Abstract:

6.1 Introduction

6.2 Separation using zeolite membranes

6.3 Zeolite membrane reactors

6.4 Modeling of zeolite membrane reactors

6.5 Scale-up and scale-down of zeolite membranes

6.6 Conclusion and future trends

6.8 Appendix: nomenclature

Chapter 7: Dense ceramic membranes for membrane reactors

Abstract:

7.1 Introduction

7.2 Principles of dense ceramic membrane reactors

7.3 Membrane preparation and catalyst incorporation

7.4 Fabrication of membrane reactors

7.5 Conclusion and future trends

7.6 Acknowledgements

7.8 Appendices

Chapter 8: Porous ceramic membranes for membrane reactors

Abstract:

8.1 Introduction
Chapter 9: Microporous silica membranes: fundamentals and applications in membrane reactors for hydrogen separation

Abstract:

9.1 Introduction
9.2 Microporous silica membranes
9.3 Membrane reactor function and arrangement
9.4 Membrane reactor performance metrics and design parameters
9.5 Catalytic reactions in a membrane reactor configuration
9.6 Industrial considerations
9.7 Future trends and conclusions
9.8 Acknowledgements
9.10 Appendix: nomenclature

Chapter 10: Carbon-based membranes for membrane reactors

Abstract:

10.1 Introduction
10.2 Unsupported carbon membranes
10.3 Supported carbon membranes
10.4 Carbon membrane reactors (CMRs)
10.5 Micro carbon-based membrane reactors
10.6 Conclusions and future trends
10.7 Acknowledgements
10.9 Appendix: nomenclature

Chapter 11: Advances in catalysts for membrane reactors

Abstract:

11.1 Introduction
Chapter 12: Mathematical modelling of membrane reactors: overview of strategies and applications for the modelling of a hydrogen-selective membrane reactor

Abstract:

12.1 Introduction

12.2 Membrane reactor concept and modelling

12.3 A hydrogen-selective membrane reactor application: natural gas steam reforming

12.4 Conclusions

12.5 Acknowledgements

Chapter 13: Computational fluid dynamics (CFD) analysis of membrane reactors: simulation of single-and multi-tube palladium membrane reactors for hydrogen recovery from cyclohexane

Abstract:

13.1 Introduction

13.2 Single palladium membrane tube reactor

13.4 Conclusions and future trends

13.6 Appendix: nomenclature

Chapter 14: Computational fluid dynamics (CFD) analysis of membrane reactors: simulation of a palladium-based membrane reactor in fuel cell micro-cogenerator system

Abstract:

14.1 Introduction

14.2 Polymer electrolyte membrane fuel cell (PEMFC) micro-cogenerator systems and MREF

14.3 Model description and assumptions

14.4 Simulation results and discussion of modelling issues

14.5 Conclusion and future trends

14.6 Acknowledgements
Chapter 15: Computational fluid dynamics (CFD) analysis of membrane reactors: modelling of membrane bioreactors for municipal wastewater treatment

Abstract:

15.1 Introduction
15.2 Design of the membrane bioreactor (MBR)
15.3 Computational fluid dynamics (CFD)
15.4 CFD modelling for MBR applications
15.5 Model calibration and validation techniques
15.6 Future trends and conclusions
15.7 Acknowledgement
15.9 Appendix: nomenclature

Chapter 16: Models of membrane reactors based on artificial neural networks and hybrid approaches

Abstract:

16.1 Introduction
16.2 Fundamentals of artificial neural networks
16.3 An overview of hybrid modeling
16.4 Case study: prediction of permeate flux decay during ultrafiltration performed in pulsating conditions by a neural model
16.5 Case study: prediction of permeate flux decay during ultrafiltration performed in pulsating conditions by a hybrid neural model
16.6 Case study: implementation of feedback control systems based on hybrid neural models
16.7 Conclusions
16.9 Appendix: nomenclature

Chapter 17: Assessment of the key properties of materials used in membrane reactors by quantum computational approaches

Abstract:

17.1 Introduction
17.2 Basic concepts of computational approaches
17.3 Gas adsorption in porous nanostructured materials
17.4 Adsorption and absorption of hydrogen and small gases
17.5 Conclusions and future trends
17.7 Appendix: nomenclature

Chapter 18: Non-equilibrium thermodynamics for the description of transport of heat and mass across a
zeolite membrane

Abstract:

18.1 Introduction

18.2 Fluxes and forces from the second law and transport coefficients

18.3 Case studies of heat and mass transport across the zeolite membrane

18.4 Conclusions and future trends

18.5 Acknowledgement

18.7 Appendix: nomenclature

Index

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Handbook of Membrane Reactors
Web Address: http://www.researchandmarkets.com/reports/3744563/
Office Code: SCH3OF55

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>USD 280 + USD 29 Shipping/Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Paper back):</td>
<td></td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World