Nanotechnology in Eco-Efficient Construction

Description: As the environmental impact of existing construction and building materials comes under increasing scrutiny, the search for more eco-efficient solutions has intensified. Nanotechnology offers great potential in this area and is already being widely used to great success. Nanotechnology in eco-efficient construction is an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction.

Following an introduction to the use of nanotechnology in eco-efficient construction materials, part one considers such infrastructural applications as nanoengineered cement-based materials, nanoparticles for high-performance and self-sensing concrete, and the use of nanotechnology to improve the bulk and surface properties of steel for structural applications. Nanoclay-modified asphalt mixtures and safety issues relating to nanomaterials for construction applications are also reviewed before part two goes on to discuss applications for building energy efficiency. Topics explored include thin films and nanostructured coatings, switchable glazing technology and third generation photovoltaic (PV) cells, high-performance thermal insulation materials, and silica nanogel for energy-efficient windows. Finally, photocatalytic applications are the focus of part three, which investigates nanoparticles for pollution control, self-cleaning and photosterilisation, and the role of nanotechnology in manufacturing paints and purifying water for eco-efficient buildings.

Nanotechnology in eco-efficient construction is a technical guide for all those involved in the design, production and application of eco-efficient construction materials, including civil engineers, materials scientists, researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry.

- Provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction
- Examines the use of nanotechnology in eco-efficient construction materials
- Considers a range of important infrastructural applications, before discussing applications for building energy efficiency

Contents:

Contributor contact details

Chapter 1: Introduction to nanotechnology in eco-efficient construction

Abstract:

1.1 Introduction

1.2 The need for nanotechnology in the construction sector

1.3 Outline of the book

Part I: Infrastructural applications

Chapter 2: Nanoscience and nanoengineering of cement-based materials

Abstract:

2.1 Introduction

2.2 Nanoscience of cement-based materials

2.3 Nanoengineering of cement-based materials

2.4 Conclusion
Chapter 3: Nanoparticles for high performance concrete (HPC)

Abstract:

3.1 Introduction
3.2 Concrete with nanoparticles
3.3 The problem of efficient nanoparticle dispersion
3.4 Conclusions

Chapter 4: Self-sensing concrete with nanomaterials

Abstract:

4.1 Introduction
4.2 Studying conductive admixtures in concrete
4.3 Influence of conductive admixtures on the mechanical properties of concrete
4.4 Influence of conductive admixtures on the electrical properties of concrete beams
4.5 Strain and damage in concrete beams (self-diagnosing of damage)
4.6 Diphasic electrical conductive materials
4.7 Conclusions

Chapter 5: The use of nanotechnology to improve the bulk and surface properties of steel for structural applications

Abstract:

5.1 Introduction
5.2 Research relating to nanocomposite steel
5.3 Properties of nanocomposite steel
5.4 Future trends

Chapter 6: Nanoclay-modified asphalt mixtures for eco-efficient construction

Abstract:

6.1 Introduction
6.2 Research on nanoclay-modified asphalt mixtures
6.3 Material and methods
6.4 Rheological tests and results
6.5 Mechanical testing of asphalt mixtures
6.6 Conclusion
6.7 Future trends

Chapter 7: Safety issues relating to nanomaterials for construction applications
Abstract:

7.1 Introduction to nanotoxicity
7.2 Potential nano-hazards of manufactured nanomaterials (MNMs) utilized in construction
7.3 Lifecycle of nano-enabled structures
7.4 Toxicity profiling for nanomaterials
7.5 Future trends and conclusions

Part II: Applications for building energy efficiency

Chapter 8: Thin films and nanostructured coatings for eco-efficient buildings
Abstract:

8.1 Introduction
8.2 Major thin film technologies and some illustrative examples
8.3 Large-scale manufacturing
8.4 Conclusion and future trends

Chapter 9: High performance thermal insulation materials for buildings
Abstract:

9.1 Introduction
9.2 Heat transfer in thermal insulators
9.3 State-of-the-art insulators
9.4 Applications
9.5 Future trends

Chapter 10: Silica nanogel for energy-efficient windows
Abstract:

10.1 Introduction
10.2 Aerogels for windows
10.3 Current applications of aerogels in buildings
10.4 Performance of nanogel windows
10.5 Future trends

Chapter 11: Switchable glazing technology for eco-efficient construction
Abstract:

11.1 Introduction
11.2 Electrochromics: materials and devices
11.3 Thermochromics: materials and devices
11.4 Future trends in electrochromic and thermochromic glazing

Chapter 12: Third generation photovoltaic (PV) cells for eco-efficient buildings and other applications

Abstract:
12.1 Introduction
12.2 History of photovoltaic (PV) cells
12.3 Functions of a photovoltaic (PV) cell
12.4 Overview of photovoltaic (PV) technology: first, second and third generation cells
12.5 The use of nanotechnology in photovoltaic (PV) technology
12.6 Future trends

Part III: Photocatalytic applications

Chapter 13: Concrete, mortar and plaster using titanium dioxide nanoparticles: applications in pollution control, self-cleaning and photo sterilization

Abstract:
13.1 Introduction
13.2 Principles of heterogeneous photocatalysis
13.3 Applications of semiconductor photocatalysis
13.4 TiO2 in cement-based materials
13.5 Efficiency of TiO2 in the built environment
13.6 Pilot projects and field tests
13.7 Existing patents and standards relating to photocatalytic cementitious materials

Chapter 14: Self-cleaning tiles and glasses for eco-efficient buildings

Abstract:
14.1 Introduction
14.2 Important production parameters
14.3 Mechanism of self-cleaning glasses and tiles
14.4 Future trends

Chapter 15: Nanotechnology in manufacturing paints for eco-efficient buildings

Abstract:
15.1 Introduction
15.2 Application of photocatalytic paints in an outdoor environment
15.3 Application of photocatalytic paints in an indoor environment
15.4 Potential formation of by-products

15.5 Future trends

Chapter 16: Nanotechnology for domestic water purification

Abstract:

16.1 Introduction

16.2 Nanomaterials and water purification

16.3 The need for nanomaterials in water purification

16.4 Types, properties and uses of nanomaterials in water purification

16.5 Synthesis of nanomaterials

16.6 Nanotechnology: health, safety and environment

16.7 Domestic water purification: challenges to bring about an integrated system

16.7.2 Challenges with development of integrated nano-based systems for water purification

Index

Ordering: Order Online - http://www.researchandmarkets.com/reports/3744574/

Order by Fax - using the form below

Order by Post - print the order form below and send to

 Research and Markets,
 Guinness Centre,
 Taylors Lane,
 Dublin 8,
 Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Nanotechnology in Eco-Efficient Construction
Web Address: http://www.researchandmarkets.com/reports/3744574/
Office Code: SC6IOFSI

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy</td>
<td>USD 217 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:
Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp