DNA Repair Drugs: Focus on PARP Inhibitors, 2016-2026

Description:

The ‘DNA Repair Drugs: Focus on PARP Inhibitors, 2016-2026’report is an elaborate study of drugs targeting DNA damage and repair systems, particularly, the enzyme PARP. DNA, the repository of genetic information, is susceptible to damage caused by several environmental and synthetic agents.

DNA damage leads to the incorporation of defects and aberrations in the genome that often result in functional mutations. When these mutations occur in genes coding for vital proteins and/or enzymes, it leads to the development of genetic diseases. However, our biological system is equipped with a robust repair mechanism capable of correcting damaged DNA sequences. PARP inhibitors and other similar therapeutics are designed to augment the body's innate DNA repair mechanism and aid in the treatment of diseases associated with genetic aberrations.

So far, this emerging class of drugs has only been evaluated across a niche population segment. This has led to increased efforts in the development of therapeutics targeting cells that harbor defects in their repair systems. There are several targets, other than PARP, that are also under clinical evaluation.

The PARP inhibitors market consists of a thin but promising pipeline of products targeting various indications. Since its serendipitous discovery, the developmental history of these candidate therapeutics has been full of ups and downs. The recalling of the late stage molecule, iniparib, and the termination of several other candidate therapeutics significantly impacted the growth of this segment of the industry. However, it has picked up pace after the commercialization of LynparzaTM (olaparib), the only marketed PARP inhibitor till date.

It is important to highlight the role of companion diagnostics, which have significantly contributed to growth in this segment. These molecular tools enabled therapy developers to accurately identify eligible patient groups. Encouraging clinical results demonstrating prolonged PFS and overall survival rates have also accelerated the progress of this drug class.

One of the key objectives of this study was to review and quantify the opportunities laid by the academia/industry players involved in this space. Considering the success of olaparib and clinical data from other active late stage development programs, we have presented an opinion on the anticipated success of PARP inhibitors. Amongst other elements, the report elaborates upon the following key areas:

- The current state of the market with respect to key players, developmental status of pipeline products (both clinical/preclinical) and target indications
- The role of innovative companion diagnostics that have contributed significantly in the development of PARP inhibitors
- An overview of the competitive landscape, elaborating upon other drug classes that explicitly use the DNA repair system as a therapeutic tool
- An in-depth analysis of all peer-reviewed literature that is available on the key late stage molecules, published in the past few years
- Development and sales potential of PARP inhibitors based on target consumer segments, likely adoption rate and expected pricing

The analysis in the report is backed by a deep understanding of key drivers behind the market's growth. With an intent to add comprehensiveness to the market projections, we have provided three market forecast scenarios; the base, optimistic and conservative scenarios represent the likely trends of the future evolution of the market. All actual figures have been sourced and analyzed from publicly available information. The financial figures mentioned in this report are in USD, unless otherwise specified.

Example Highlights

- Overall, we have identified 11 unique PARP inhibitors under clinical/preclinical development; of these, eight (73%) are being developed for oncological indications, two (18%) are under development for stroke and one (9%) is being developed for smoke inhalation injury and primary graft dysfunction.
- Four drugs are in late phase (phase III) of development; veliparib (AbbVie), talazoparib (Medivation), niraparib (Tesaro) and rucaparib (Clovis Oncology).
Myriad Genetics and Foundation Medicine have emerged as the major diagnostic developers to actively join hands with PARP inhibitor developers. A companion diagnostic kit called BRACAnalysis CDx®, developed by Myriad Genetics, has been approved to be used with olaparib to detect mutations in the BRCA genes.

We anticipate the PARP inhibitors market to grow aggressively at a healthy annual growth rate of 42% between 2016 and 2026. In the longer term, we expect the market to continue to rise steadily with high adoption rates of marketed drugs and approval of new drugs and indications.

The overall opportunity will certainly face credible competition from several other classes of DNA repair inhibitors that are currently under development. Some prominent examples include APE inhibitors, nucleotide excision repair (NER) pathway inhibitors, O(6)-methylguanine-DNA methyltransferase (MGMT) inhibitors, DNA-protein kinase (DNA-PK) inhibitors, histone deacetylase (HDAC) inhibitors, cyclin dependent kinase (CDK) inhibitors and checkpoint kinase (CHK1) inhibitors.
4.7. Genetic Mutations and Susceptibility to PARP Inhibition
4.8. BRCA1/2 and PARP Inhibitor Sensitivity
4.9. Key Clinical Findings
4.10. PARP Inhibitors as Chemosynthesizers and Radiosensitizers

5. HISTORY OF DEVELOPMENT
5.1. Chapter Overview
5.2. Discovery of PARP Inhibitors
5.3. Pioneering Research on PARP Inhibitors
5.4. Early Failure of PARP Inhibitors
5.5. Case Study: Iniparib
5.5.1. Iniparib: Clinical Development Plan
5.5.2. Iniparib: Clinical Trial Endpoints
5.5.3. Iniparib: Key Clinical Findings
5.5.4. Iniparib: Reasons for Failure

6. MARKET LANDSCAPE
6.1. Chapter Overview
6.2. PARP Inhibitors: Current Market Landscape
6.3. PARP Inhibitors: Development Pipeline
6.4. PARP Inhibitors: Oncological Indications Emerge as the Most Targeted Therapeutics Area
6.5. PARP Inhibitors: An Evolving Market
6.6. PARP Inhibitors Pipeline: Ovarian and Breast Cancer are the Primary Target Indications
6.7. PARP Inhibitors Pipeline: Catering to a Unique and Niche Patient Segment
6.8. PARP Inhibitors Pipeline: Significant Results Driving PARP Inhibitors as Combination Therapy
6.9. PARP Inhibitors Pipeline: Oral Administration Continues to be the Preferred Choice

7. DRUG PROFILES
7.1. Chapter Overview
7.2. Olaparib (AstraZeneca)
7.2.1. Introduction
7.2.2. History of Development
7.2.3. Dosage Regimen and Pricing
7.2.4. Companion Diagnostic
7.2.5. Historical Sales
7.2.6. Current Development Status
7.2.7. Clinical Trials
7.2.8. Clinical Trial Endpoints
7.2.9. Key Clinical Trial Results
7.2.9.1. Ovarian Cancer
7.2.9.2. Breast Cancer
7.2.9.3. Gastric Cancer
7.2.9.4. Pancreatic Cancer
7.2.9.5. Prostate Cancer
7.2.9.6. Solid Tumors
7.2.10. Key Preclinical Findings
7.2.11. Developer Overview
7.2.12. Collaborations

7.3. Veliparib (AbbVie)
7.3.1. Introduction
7.3.2. Current Status of Development
7.3.3. Clinical Trials
7.3.4. Clinical Trial Endpoints
7.3.5. Key Clinical Trial Results
7.3.5.1. Lung Cancer
7.3.5.2. Brain Cancer
7.3.5.3. Liver Cancer
7.3.5.4. Pancreatic Cancer
7.3.5.5. Breast Cancer
7.3.5.6. Ovarian Cancer
7.3.5.7. Prostate Cancer
7.3.5.8. Solid Tumors
7.3.6. Key Preclinical Findings
7.3.7. Developer Overview
7.3.8. Collaborations

7.4. Niraparib (Tesaro)
7.4.1. Introduction
7.4.2. Dosage Regimen
7.4.3. Companion Diagnostic
7.4.4. Patents
7.4.5. Current Development Status
7.4.6. Clinical Trials
7.4.7. Clinical Trial Endpoints
7.4.8. Key Clinical Trial Results
7.4.8.1. Solid Tumors
7.4.9. Key Preclinical Findings
7.4.10. Developer Overview
7.4.11. Collaborations

7.5. Talazoparib (Medivation)
7.5.1. Introduction
7.5.2. History of Development
7.5.3. Dosage Regimen
7.5.4. Current Status of Development
7.5.5. Clinical Trials
7.5.6. Planned Studies
7.5.7. Clinical Trial Endpoints
7.5.8. Key Clinical Trial Results
7.5.8.1. Metastatic Breast Cancer
7.5.8.2. Solid Tumors
7.5.9. Key Preclinical Findings
7.5.10. Developer Overview
7.5.11. Collaborations

7.6. Rucaparib (Clovis Oncology)
7.6.1. Introduction
7.6.2. History of Development
7.6.3. Dosage Regimen
7.6.4. Companion Diagnostics
7.6.5. Patents
7.6.6. Current Status of Development
7.6.7. Clinical Trials
7.6.8. Clinical Trial Endpoints
7.6.9. Key Clinical Trial Results
7.6.9.1. Ovarian Cancer
7.6.9.2. Solid Tumors
7.6.9.3. Pancreatic Cancer
7.6.10. Key Preclinical Findings
7.6.11. Developer Overview
7.6.12. Collaborations

8. MARKET FORECAST
8.1. Chapter Overview
8.2. Forecast Methodology
8.3. Overall PARP Inhibitors Market, 2016-2026

8.3.1. Olaparib (Lynparza) (AstraZeneca)
8.3.1.1. Target Patient Population
8.3.1.2. Sales Forecast

8.3.2. Veliparib (AbbVie)
8.3.2.1. Target Patient Population
8.3.2.2. Sales Forecast
8.3.3. Niraparib (Tesaro)
8.3.3.1. Target Patient Population
8.3.3.2. Sales Forecast

8.3.4. Talazoparib (Medivation)
8.3.4.1. Target Patient Population
8.3.4.2. Sales Forecast

8.3.5. Rucaparib (Clovis Oncology)
8.3.5.1. Target Patient Population
8.3.5.2. Sales Forecast

9. PUBLICATION ANALYSIS
9.1. Chapter Overview
9.2. PARP Inhibitors: Overview of Research
9.3. Olaparib Leads the PARP Inhibitors Research Space; Veliparib to Follow
9.4. 2015 Suggests Renewed Interest in This Drug Class
9.5. Combination Therapy Leads the Research Space of PARP Inhibitors
9.6. Phase I Clinical Trial Data is The Most Documented Literature
9.7. Industry and Academia have Both Contributed to the Development of PARP Inhibitors
9.8. Safety: One of the Most Evaluated Clinical Endpoint
9.9. Ovarian Cancer is The Major Focus Area

10. COMPETING CLASSES
10.1. Chapter Overview
10.2. Direct Approach
10.2.1. APE Inhibitors (BER)
10.2.2. NER Pathway Inhibitors (NER)
10.2.3. MGMT Inhibitors (Direct Repair Pathway)
10.2.4. DNA Protein Kinase Inhibitors (NHEJ; HRR)
10.3. Indirect Mechanism
10.3.1. Histone Deacetylase (HDAC) Inhibitors
10.3.2. Cyclin Dependent Kinase (CDK) Inhibitors
10.3.3. CHK1 Inhibitors
10.4. Other Novel DNA Repair Inhibitors
10.4.1. SINE XPO1 Antagonist
10.4.2. Pyrrolobenzodiazepine Dimers (PBDs)
10.4.3. RAD51 Inhibitors
10.4.4. DNA Binding Antibody Platform

11. CONCLUSION
11.1. A Robust DNA Damage Response Network Helps Maintain the Integrity and Stability of DNA
11.2. Targeting DNA Repair has Demonstrated Tremendous Anti-Cancer Potential
11.3. PARP Inhibitors: A Leading Class of DNA Repair Inhibitors
11.4. A Thin Therapeutic Pipeline Targeting a Niche Population Across Various Cancer Indications
11.5. Companion Diagnostics Aid in the Identification of the Correct Target Population
11.6. Significant Opportunity Amongst Targeted Inhibitors Highlights A Promising Market Ahead

12. APPENDIX I: TABULATED DATA

13. APPENDIX II: LIST OF COMPANIES AND ORGANIZATIONS

List of Figures

Figure 3.1 Types of DNA Damage

Figure 3.2 DNA Damage: Types of Causative Agents
Figure 3.3 Types of DNA Damage and Repair
Figure 3.4 DNA Damage Response System
Figure 3.5 Types of DNA Repair Systems
Figure 3.6 Base Excision Repair Pathway
Figure 3.7 Nucleotide Excision Repair Pathway
Figure 3.8 Mismatch Repair Pathway
Figure 3.9 Homologous Recombination Repair Pathway
Figure 3.10 Non-Homologous End-Joining Repair
Figure 3.11 Genetic Disorders Caused due to Defects in DNA Repair Pathways
Figure 4.1 PARP Proteins: Mechanism of Action
Figure 4.2 Family Tree of PARP Proteins
Figure 4.3 Structure of PARP-1 and PARP-2
Figure 4.4 Functions of PARP Proteins
Figure 4.5 Mutated Tumors Cells and PARP Inhibition
Figure 4.6 Mechanism of Action: PARP Trapping
Figure 4.7 Systematic Natural DNA Repair vs PARP Inhibition
Figure 6.1 PARP Inhibitors Pipeline: Distribution by Phase of Development (PI/II/III/Preclinical)
Figure 6.2 PARP Inhibitors Pipeline: Distribution by Target Therapeutic Area
Figure 6.3 PARP Inhibitors Pipeline: Distribution by Patient Segment
Figure 6.4 PARP Inhibitors Pipeline: Distribution by Type of Study
Figure 6.5 PARP Inhibitors Pipeline: Distribution by Route of Administration
Figure 7.1 BRACAnalysisCDx Diagnostic Kit: Historical Timeline
Figure 7.2 BRACAnalysisCDx Diagnostic Kit: Working Process
Figure 7.3 AstraZeneca: Revenues, 2009-2015 (USD Billion)
Figure 7.4 AbbVie: Revenues, 2010-2015 (USD Billion)
Figure 7.5 Talazoparib: Unique Features
Figure 7.6 Talazoparib: Planned Studies
Figure 7.7 Rucaparib: Development Timeline
Figure 8.1 Overall PARP Inhibitors Market (USD Million), 2016-2026
Figure 8.2 Olaparib Sales Forecast: Base Scenario (USD Million)
Figure 8.3 Veliparib Sales Forecast: Base Scenario (USD Million)
Figure 8.4 Niraparib Sales Forecast: Base Scenario (USD Million)
Figure 8.5 Talazoparib Sales Forecast: Base Scenario (USD Million)
Figure 8.6 Rucaparib Sales Forecast: Base Scenario (USD Million)
Figure 9.1 PARP Inhibitors Publications: Distribution by Focus Drug
Figure 9.2 PARP Inhibitors Publications: Distribution by Year of Publication
Figure 9.3 PARP Inhibitors Publications: Distribution by Study Type
Figure 9.4 PARP Inhibitors Publications: Distribution by Focus Drug and Study Type
Figure 9.5 PARP Inhibitors Publications: Distribution by Phase of Development
Figure 9.6 PARP Inhibitors Publications: Distribution by Focus Drug and Phase of Development
Figure 9.7 PARP Inhibitors Publications: Distribution by Type of Sponsor
Figure 9.8 PARP Inhibitors Publications: Distribution by Focus Drug and Type of Sponsor
Figure 9.9 PARP Inhibitors Publications: Distribution by Evaluateable Clinical Endpoints
Figure 9.10 PARP Inhibitors Publications: Distribution by Focus Drug and Evaluateable Clinical Endpoints
Figure 9.11 PARP Inhibitors Publications: Distribution by Therapeutic Area
Figure 9.12 PARP Inhibitors Publications: Distribution by Drug and Focus Therapeutic Area
Figure 10.1 Classification of HDACs
Figure 10.2 Cell Cycle Regulation
Figure 11.1 PARP Inhibitors And Companion Diagnostics: Collaborations
Figure 11.2 Overall PARP Inhibitors Market Summary (USD Million): 2016, 2021, 2026

List of Tables
Table 3.1 Components of DNA Repair System
Table 3.2 Difference between the HR and NHEJ Pathway
Table 4.1 DNA Damaging Agents Used in Cancer Therapy
Table 5.1 List of Terminated/Withdrawn PARP Inhibitors
Table 5.2 Iniparib: Clinical Trials
Table 5.3 Iniparib: Phase III Clinical Trial Endpoints
Table 5.4 Iniparib: Phase II Clinical Trial Endpoints-1
Table 5.5 Iniparib: Phase II Clinical Trial Endpoints-2
Table 6.1 PARP Inhibitors: Clinical/Preclinical Pipeline
Table 6.2 PARP Inhibitors: Clinical Development Scenario
Table 7.1 Olaparib: Current Status of Development
Table 7.2 Olaparib: Industry Sponsored Clinical Trials
Table 8.5 Veliparib: Target Patient Population
Table 8.6 Talazoparib: Target Patient Population
Table 9.1 PARP Inhibitors Publications
Table 10.1 APE1 Inhibitors Pipeline
Table 10.2 NER Inhibitors Pipeline
Table 10.3 DNA PK Inhibitors Pipeline
Table 10.4 DNA Repair: Effect of Histone Modifications
Table 10.5 HDAC Inhibitors Pipeline
Table 10.6 CDKs: Functions and Emerging Areas of Research
Table 10.7 CDK Inhibitors Pipeline
Table 10.8 CHK1 Inhibitors: Clinical Pipeline
Table 10.9 Other Novel DNA Repair Inhibitors
Table 10.10 Selinexor: Clinical Pipeline
Table 12.1 PARP Inhibitors Pipeline: Distribution by Phase of Development (PI/II/III/Preclinical)
Table 12.2 PARP Inhibitors Pipeline: Distribution by Target Therapeutic Area
Table 12.3 PARP Inhibitors Pipeline: Distribution by Patient Segment
Table 12.4 PARP Inhibitors Pipeline: Distribution by Type of Study
Table 12.5 PARP Inhibitors Pipeline: Distribution by Route of Administration
Table 12.6 AstraZeneca: Revenues, 2009-2015 (USD Billion)
Table 12.7 AbbVie: Revenues, 2010-2015 (USD Billion)
Table 12.8 Overall PARP Market: Conservative Scenario (USD Million), 2016 – 2026
Table 12.9 Overall PARP Market: Base Scenario (USD Million), 2016 – 2026
Table 12.10 Overall PARP Market: Optimistic Scenario (USD Million), 2016 – 2026
Table 12.11 Olaparib Sales Forecast: Conservative Scenario (USD Million)
Table 12.12 Olaparib Sales Forecast: Base Scenario (USD Million)
Table 12.13 Olaparib Sales Forecast: Optimistic Scenario (USD Million)
Table 12.14 Veliparib Sales Forecast: Conservative Scenario (USD Million)
Table 12.15 Veliparib Sales Forecast: Base Scenario (USD Million)
Table 12.16 Veliparib Sales Forecast: Optimistic Scenario (USD Million)
Table 12.17 Niraparib Sales Forecast: Conservative Scenario (USD Million)
Table 12.18 Niraparib Sales Forecast: Base Scenario (USD Million)
Table 12.19 Niraparib Sales Forecast: Optimistic Scenario (USD Million)
Table 12.20 Talazoparib Sales Forecast: Conservative Scenario (USD Million)
Table 12.21 Talazoparib Sales Forecast: Base Scenario (USD Million)
Table 12.22 Talazoparib Sales Forecast: Optimistic Scenario (USD Million)
Table 12.23 Rucaparib Sales Forecast: Conservative Scenario (USD Million)
Table 12.24 Rucaparib Sales Forecast: Base Scenario (USD Million)
Table 12.25 Rucaparib Sales Forecast: Optimistic Scenario (USD Million)
Table 12.26 PARP Inhibitors Publications: Distribution by Focus Drug
Table 12.27 PARP Inhibitors Publications: Distribution by Year of Publication
Table 12.28 PARP Inhibitors Publications: Distribution by Study Type
Table 12.29 PARP Inhibitors Publications: Distribution by Focus Drug and Study Type
Table 12.30 PARP Inhibitors Publications: Distribution by Phase of Development
Table 12.31 PARP Inhibitors Publications: Distribution by Focus Drug and Phase of Development
Table 12.32 PARP Inhibitors Publications: Distribution by Type of Sponsor
Table 12.33 PARP Inhibitors Publications: Distribution by Focus Drug and Type of Sponsor
Table 12.34 PARP Inhibitors Publications: Distribution by Evaluable Clinical Endpoints
Table 12.35 PARP Inhibitors Publications: Distribution by Focus Drug and Evaluable Clinical Endpoints
Table 12.36 PARP Inhibitors Publications: Distribution by Therapeutic Area
Table 12.37 PARP Inhibitors Publications: Distribution by Focus Drug and Focus Therapeutics Area
Table 12.38 Overall PARP Inhibitors Market Summary (USD Million): 2016, 2021, 2026

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3757809/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: DNA Repair Drugs: Focus on PARP Inhibitors, 2016-2026
Web Address: http://www.researchandmarkets.com/reports/3757809/
Office Code: SCBRFFQV

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td>[]</td>
<td>USD 2349</td>
</tr>
<tr>
<td>Electronic (PDF) - Site License</td>
<td>[]</td>
<td>USD 5499</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td>[]</td>
<td>USD 9999</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___ Last Name: ___
Email Address: * ______________________________________
Job Title: __
Organisation: ___
Address: ___
City: ___
Postal / Zip Code: ____________________________________
Country: ___
Phone Number: ___
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp