Industrial and Commercial Electric Vehicles on Land 2016-2026

Description: Those selling components for electric vehicles and those wishing to make the vehicles themselves must seek where the majority of the money is spent and will be spent. That must lead them to industrial and commercial electric vehicles because today these represent 60% of the value of the electric vehicle market. Indeed, this sector is set to grow 4.2 times in the next decade. Industrial and commercial electric vehicles include heavy industrial vehicles, the term referring to heavy lifting, as with forklifts.

Then we have buses, trucks, taxis and the other light industrial and commercial vehicles. There are also a few work boats and commercial boats and one day there will be commercial electric aircraft but this is really a story about the burgeoning demand for off-road industrial vehicles and on-road commercial vehicles.

In particular, industrial electric vehicles make industry more efficient and commercial electric vehicles reduce congestion. Both of them greatly reduce pollution and align closely with government objectives concerning industry and the environment, yet they minimally depend on subsidy, in contrast with some other electric vehicle types.

This report covers the technical and market trends for industrial and commercial vehicles whether hybrid or pure electric, putting it in the context of electric vehicles overall and including the activities of a host of manufacturers of the vehicles and their components and even providing future technological development roadmaps.

The market for electric industrial vehicles is already large because, by law, forklifts have to be electric when used indoors. Little growth remains in this market but outdoors almost all earthmoving and lifting vehicles use the conventional internal combustion engine. That is about to change dramatically because hybrid electric versions reduce cost of ownership and exposure to price hikes with fossil fuels.

Hybrids increasingly perform better as well, with more power from stationary, ability to supply electricity to other equipment and other benefits including less noise and pollution. On the other hand, airports, often government owned or funded, are under great pressure to finish converting their Ground Support Equipment GSE to pure electric versions both on and off the tarmac partly using federal grants.

Yet another industrial trend is for use of electric vehicles to replace slow and often dangerous manual procedures. Sometimes a self-powered indoor crane replaces scaffolding. An electric stair climber replaces human effort and possible injury. On the other hand, sit-on floor cleaners in buildings, sit-on ice cleaners in ice rinks, outrider vehicles carried on trash collection trucks and a host of similar solutions speed processes and reduce injuries and costs.

Buses, trucks, taxis and the other light industrial and commercial vehicles are going electric for similar reasons but we must add the desire of national and local governments, who buy many of them, to go green, even where there is no payback. However, the size and growth of the industrial and commercial sector is less dependent on government funding and tax breaks than the more fragile market for electric cars, particularly pure electric ones. Excitingly, most of the electric vehicle technologies are changing and improving hugely and innovation often comes here before it is seen in the more publicised electric vehicle sectors such as cars.

Asynchronous traction motors were first widely used on forklifts: their benefits of longer life, less maintenance, low cost and freedom from magnet price hikes and heating problems are only later being seen in a few cars. Ultracapacitors otherwise known as supercapacitors permit very fast charging of buses whether by the new Level 3 charging stations or regenerative braking and they release huge surges of power when the bus is full and starting on a hill.

Gas turbine range extenders have been on some buses for 12 years but they are only now being planned for cars. Fuel cells will be viable in fleets where the expensive hydrogen distribution is manageable - not for cars across the world. Energy harvesting shock absorbers about to hit the market will be very viable on buses and trucks where they can put up to 12 kW into the battery whereas such devices on cars will take longer to prove.
Nevertheless, it is important to look at industrial and commercial electric vehicles as part of all electric vehicles out there - as we do - because it is increasingly true that one company will produce EVs for many end uses and even make key components. This achieves the product reliability and cost advantages that come from highest volume manufacture based on standardisation and shared research.

Main areas the report covers

The report provides forecasts of the heavy industrial, light industrial & commercial, bus and taxi global markets by numbers, ex-factory price and total market value for the coming decade. In addition to chapters on these sectors, there are chapters on the market drivers, the key technologies and their future trends all pulled together with summary charts, graphs and profiles of latest company activity.

Contents:
1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Dominant electric commercial vehicle types and influences change
 1.2. Market forecasts
 1.3. Forecast for commercial vehicles 2016-2026
 1.4. Latest progress
 1.5. Examples of new industrial and commercial vehicles and projects announced in 2016
 1.5.1. Powertrain choices change radically
 1.6. Electrical machine systems take more cost, batteries less
 1.7. The elephant in the room: conventional vehicles

2. INTRODUCTION
 2.1. Urban logistics trends
 2.2. Technology disagreement
 2.3. The special case of China
 2.3.1. Pollution control is urgent
 2.3.2. Particulate matter - China the worst
 2.3.3. Inadequate roads and parking
 2.3.4. Example of action BYD
 2.4. Biggest EV?
 2.5. Different strategies
 2.6. Battery Vehicle Work Rounds for Very Long Range
 2.6.1. Light truck with fuel cell, battery and supercapacitor
 2.7. Reusable electric powertrain

3. MARKET DRIVERS FOR INDUSTRIAL AND COMMERCIAL EVS
 3.1. Trends
 3.2. Advantages of electric commercial vehicles

4. HEAVY INDUSTRIAL EVS
 4.1. What is included
 4.2. Challenges
 4.3. Forklifts
 4.3.1. Small forklift success
 4.3.2. A look at many FC forklifts across the world
 4.3.3. Plug Power transforms the industry
 4.3.4. Asia Pacific Fuel Cell Technologies APFCT
 4.3.5. Forklift market analysis
 4.3.6. FC material handling fleets and standards
 4.3.7. Market analysis
 4.3.8. FC material handling fleets and standards
 4.4. Listing of manufacturers
 4.4.1. Statistics for all types of industrial lift truck
 4.4.2. Manufacturers of heavy industrial EVs

5. LIGHT INDUSTRIAL & COMMERCIAL EVS
 5.1. Introduction
 5.1.1. Overview
 5.1.2. One quarter of commercial vehicles in Germany can be electric now?
 5.2. Sub categories
 5.3. Local services
8.2. Three wheelers as crossover products
8.3. Operational benefit of three wheel
8.3.1. Introduction
8.3.2. Nissan DeltaWing
8.3.3. The basics driving us to three wheel
8.3.4. Energy efficiency
8.3.5. Relative magnitude of energy dissipation
8.3.6. Occupancy trend favours 3 wheel?
8.3.7. Low cost three wheel vehicle market
8.3.8. The Indian three wheel market - the largest globally
8.3.9. Electric three wheeler penetration
8.4. Benefits of three wheelers
8.5. Three wheel electric vehicles: varied positioning in the market
8.5.1. Twike, Piaggio, Xingui and others contrasted
8.5.2. Toyota scenario
8.5.3. Spira4u in 2015
8.6. Mule: Modern Electric Workhorse to Slice Through Urban Traffic Easily
8.7. Barriers for adoption of three wheel EVs

9. ELECTRIC VEHICLES FOR CONSTRUCTION, AGRICULTURE AND MINING
9.1. Overview
9.2. Value proposition and environmental restrictions
9.3. Autonomous vehicles for agriculture and mining
9.4. Energy and work synchronization in mining
9.5. Light manned vehicles - PapaBravo Canada
9.6. Examples of cranes and lifters
9.7. Caterpillar and Komatsu: energy harvesting on large hybrid vehicles
9.7.1. CALSTART partnerships
9.7.2. Other electrification of large vehicles

10. KEY COMPONENTS FOR INDUSTRIAL AND COMMERCIAL ELECTRIC VEHICLES
10.1. Types of electric vehicle
10.2. Many fuels
10.3. Born electric
10.4. Pure electric vehicles are improving
10.5. Series vs parallel hybrid
10.6. Modes of operation of hybrids
10.6.1. Plug in hybrids
10.6.2. Charge-depleting mode
10.6.3. Blended mode
10.6.4. Charge-sustaining mode
10.6.5. Mixed mode
10.7. Microhybrid is a misnomer
10.8. Deep hybridisation
10.9. Hybrid vehicle price premium
10.10. Battery cost and performance are key
10.11. Trade-off of energy storage technologies
10.12. Ultracapacitors = supercapacitors
10.12.1. Where supercapacitors fit in
10.12.2. Advantages and disadvantages
10.12.3. Can supercapacitors replace batteries?
10.12.4. Supercapacitors - a work round for troublesome batteries
10.12.5. Supercabatteries: lithium-ion capacitors
10.13. Range extenders
10.13.1. What will be required of a range extender?
10.13.2. Three generations of range extender
10.13.3. Fuel cell range extenders
10.14. Big effect of many modest electricity sources combined
10.15. Energy harvesting
10.16. Trend to high voltage
10.17. Structural components
10.18. Trend to distributed components
10.19. Trend to flatness then smart skin
10.20. Traction batteries
10.20.1. After the shakeout in car traction batteries
10.20.2. The needs have radically changed
10.20.3. It started with cobalt
10.20.4. Great variety of recipes
10.20.5. Other factors
10.20.6. Check with reality
10.20.7. Lithium winners today and soon
10.20.8. Reasons for winning
10.20.9. Lithium polymer electrolyte now important
10.20.10. Winning chemistry
10.20.11. Titanate establishes a place
10.20.12. Laminar structure
10.20.13. Niche winners
10.20.14. Fluid situation
10.21. Traction motors
10.21.1. Traction motor trends
10.21.2. Shape of motors
10.21.3. Examples of motors in action
10.22. Power electronics

11. INDUSTRIAL AND COMMERCIAL COMPANY PROFILES
11.1. Ayton Willow
11.2. Bradshaw Electric
11.3. Caproni JSC
11.4. Crown Equipment Corporation
11.5. Hyster-Yale
11.6. John Deere
11.7. Jungheinrich AG
11.8. Kion Group GmbH
11.9. Liberty Electric Cars
11.10. MAN Truck & Bus AG
11.11. Toyota Motor
11.12. Valence Technologies
11.13. VISEDØ Oy
11.14. ZNTK Radom

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3763744/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name:	Industrial and Commercial Electric Vehicles on Land 2016-2026
Web Address:	http://www.researchandmarkets.com/reports/3763744/
Office Code:	SCH38PT4

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5220</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5535 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7833</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 8148 + USD 58 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp