Lithium-ion Batteries 2016-2026

Description: This report has over 170 detailed slide-format pages of new forecasts, analysis and infographics seeing the future with depth on technology trends, needs and market forecasts. The emphasis is almost entirely on the present and the future such as how parameters will improve and lower costs, new shapes and mechanical properties, improved safety and non-flammable non-toxic versions will open up new markets. Over 450 manufacturers are compared in chemistry, assembly and sales thrust.

There is depth on the next technology breakthroughs such as silicon anodes. The key parts of recent presentations by all the key players are embedded in this work, almost entirely researched in 2016 by award winning PhD level analysts travelling worldwide. Interviews, databases, web searches and conference attendance were extensively used.

The structure of the report is a comprehensive Executive Summary and Conclusions with forecasts, issues, roadmaps etc. then Introduction looking at battery basics and lithium-ion in particular. An Applications chapter maps parameters and solutions with detail on the largest market of the coming decade - the trillion dollar electric vehicle business in 2026.

Subsequent chapters delve into the new characteristics needed and the technology to achieve them, notably "Li-ion for high energy density, low cost, long life" then "Li-ion becomes thin, flexible, stretchable". After that we look closely at, "Li-ion becomes non-flammable, non-toxic, structural" with some extra achievements such as transparency. Finally, the report has a unique new listing of over 450 manufacturers of Li-ion cells by country, anode, cathode, electrolyte, structure and application where data are established.

Some of the key findings that are detailed and explained are:

The main market value has recently changed to large versions and electric vehicles and this will continue. This creates a paradox where the number of manufacturers is proliferating past 450 but only a few can make relatively safe, acceptable, affordable large versions - the main market demand. This is because it is easy to make small versions of limited life using primitive factory conditions.

The Japanese and Koreans are named that control the key technology and, with the Chinese, the production. The Tesla Gigafactory using Japanese Panasonic Technology will exceed all this capacity but our calculations show that many gigafactories will be needed in the decade. We say who will build others.

We explain why competitive advantage in Li-ion batteries will primarily be based on energy density, safety record, cost, production capacity and being in the protected large market of China. Competitive disadvantages are detailed. We explain which alternatives to Li-ion are strongest. We detail a feeding frenzy building up with purchasers coming from more widely afield in both territory and interest. We identify how successful niche players are proliferating and attracting bidders.

Contents: 1. EXECUTIVE SUMMARY
 1.1. The decade of lithium-ion batteries: main driving forces
 1.1.1. Lead will be marginalised
 1.1.2. Famine?
 1.2. Addressable battery market by end user segment in $ billion
 1.3. Battery volume demand in GWh by end use segment 2016-2026
 1.4. Battery price trends per sector
 1.5. Profitability estimation of alternative niche segment
 1.6. Lessons from geographical spread
 1.7. Profit V curve for Li-ion batteries
 1.8. Manufacturers compared
 1.9. Technology trends
 1.9.1. Construction
 1.9.2. Energy density not always paramount
 1.9.3. Seeking compactness and mechanical stability
1.9.4. Alternatives not ready for prime time
1.9.5. Competing with supercapacitors
1.9.6. Energy density compared to alternatives 2016 - 2028
1.9.7. Safety Warning
1.9.8. Technology for new demands
1.10. Competition
1.11. Acquisitions

2. INTRODUCTION
2.1. What is a battery?
 2.1.1. Battery categories
 2.1.2. Redox reactions
 2.1.3. Electrochemical reaction based on electron transfer
 2.1.4. Electrochemical inactive components reduce energy density
 2.1.5. Importance of electrolyte
 2.1.6. Cathode & anode need to have structural order
 2.1.7. Many considerations for batteries
 2.1.8. Commercial battery packaging technologies
 2.1.9. Comparison of commercial battery packaging technologies
 2.1.10. Electrode design & architecture: important for different applications
 2.1.11. Electrochemical inactive components in the battery
 2.1.12. Numerical specifications of popular rechargeable battery chemistries
 2.2. Lithium-ion battery chemistry

3. APPLICATIONS
3.1. Primary (non-rechargeable) vs secondary (rechargeable) batteries
3.2. Power range for electronic and electrical devices
3.3. Needs for rechargeable batteries
 3.3.1. What needs to be improved?
 3.3.2. Wearable electronics problems
 3.3.3. Mobile phone/Internet of People problems
 3.3.4. Internet of Things challenges
 3.3.5. Grid and microgrid management issues
 3.3.6. Future trend in battery for consumer electronics
3.4. Electric vehicle needs
 3.4.1. The transition from engines to pure electric: Siemens view
 3.4.2. How evolving powertrains affect Li-ion battery needs
 3.4.3. Preferred powertrains by OEM 2016-2030: survey
 3.4.4. Functions by powertrain affecting battery
 3.4.5. Mainstream car market Li-ion requirements
 3.4.6. Window of opportunity for 12V + 48V MH and 48V MH: interviews
 3.4.7. Conventional vs 48V mild hybrid vs electric cars
 3.4.8. Why buses are such a large Li-ion user
3.5. Vehicle technology roadmaps to 2040

4. LI-ION FOR HIGH ENERGY DENSITY, LOW COST, LONG LIFE
4.1. Performance priorities
4.2. Nomenclature for lithium-based rechargeable batteries
4.3. Li-ion cells - modules - battery packs
4.4. Comparison of Li-ion cells and modules
4.5. Energy density in context
4.6. Lithium-ion batteries are only incrementally improving
 4.6.1. Key cell manufacturing improvements in Li ion: 2007-2012
 4.6.2. Li-ion performance will plateau even with new materials
4.7. Cathode materials
4.8. Anode materials
 4.8.1. Why Silicon anode batteries?
 4.8.2. Silicon anode
 4.8.3. Challenges in silicon anodes
 4.8.4. Challenges in silicon anodes
 4.8.5. Silicon anodes manufacturing moving out of CVD- Amprius
 4.8.6. Silicon anodes manufacturing Etching - Nexeon
 4.8.7. Graphene's role in silicon anodes
4.8.8. Silicon anodes manufacturing CVD - CalBatt
4.8.9. Silicon anodes manufacturing Electrodeposition - Waseda University
4.8.10. Silicon anode batteries in the automotive sector
4.8.11. Silicon anode batteries in the consumer electronics sector
4.8.12. Key suppliers/developers of silicon anode materials
4.8.13. Selection of silicon anode materials by manufacturing process and company/organisation
4.9. Current collectors
4.10. Packaging

5. LI-ION BECOMES THIN, FLEXIBLE, STRETCHABLE
5.1. Needs
5.1.1. Flexibility: Big giants' growing interest
5.1.2. Thinness is still required for now and future
5.1.3. Slim consumer electronics
5.1.4. New market: Thin batteries can help to increase the total capacity
5.1.5. Will modular phones be the direction of the future?
5.2. Technology for flexible versions
5.2.1. Comparison of a flexible LIB with a traditional one
5.2.2. Lithium-polymer flexible cells
5.3. Developers
5.3.1. Huizhou Markyn
5.3.2. Showa Denko Packaging
5.3.3. Semiconductor Energy Laboratory
5.3.4. QinetiQ
5.3.5. Leeds University UK
5.3.6. Ulsan National IST

5.1. Needs
5.1.1. Flexibility: Big giants' growing interest
5.1.2. Thinness is still required for now and future
5.1.3. Slim consumer electronics
5.1.4. New market: Thin batteries can help to increase the total capacity
5.1.5. Will modular phones be the direction of the future?
5.2. Technology for flexible versions
5.2.1. Comparison of a flexible LIB with a traditional one
5.2.2. Lithium-polymer flexible cells
5.3. Developers
5.3.1. Huizhou Markyn
5.3.2. Showa Denko Packaging
5.3.3. Semiconductor Energy Laboratory
5.3.4. QinetiQ
5.3.5. Leeds University UK
5.3.6. Ulsan National IST

5.1. Needs
5.1.1. Flexibility: Big giants' growing interest
5.1.2. Thinness is still required for now and future
5.1.3. Slim consumer electronics
5.1.4. New market: Thin batteries can help to increase the total capacity
5.1.5. Will modular phones be the direction of the future?
5.2. Technology for flexible versions
5.2.1. Comparison of a flexible LIB with a traditional one
5.2.2. Lithium-polymer flexible cells
5.3. Developers
5.3.1. Huizhou Markyn
5.3.2. Showa Denko Packaging
5.3.3. Semiconductor Energy Laboratory
5.3.4. QinetiQ
5.3.5. Leeds University UK
5.3.6. Ulsan National IST

6. LI-ION BECOMES NON-FLAMMABLE, NON-TOXIC, STRUCTURAL
6.1. Why Solid State batteries?
6.2. Solid-state battery anatomy and rationale
6.2.1. Lithium-ion batteries vs Solid state batteries
6.2.2. Different generations of solid state batteries
6.3. Liquid, gel and solid electrolytes compared
6.3.1. Liquid electrolytes
6.3.2. Gel Electrolytes
6.3.3. Solid-state electrolytes
6.4. The issue with solid state thin film battery products today
6.5. Solid state materials and companies/organisations working on them
6.5.1. Toyota
6.5.2. SolidEnergy
6.6. Radically different formats become possible
6.6.1. Cable-type battery developed by LG Chem
6.6.2. Large-area multi-stacked textile battery
6.6.3. Stretchable lithium-ion battery
6.6.4. Foldable lithium-ion battery
6.6.5. Fibre-shaped lithium-ion battery
6.6.6. Needle battery
6.6.7. Transparent lithium-ion battery

6.1. Why Solid State batteries?
6.2. Solid-state battery anatomy and rationale
6.2.1. Lithium-ion batteries vs Solid state batteries
6.2.2. Different generations of solid state batteries
6.3. Liquid, gel and solid electrolytes compared
6.3.1. Liquid electrolytes
6.3.2. Gel Electrolytes
6.3.3. Solid-state electrolytes
6.4. The issue with solid state thin film battery products today
6.5. Solid state materials and companies/organisations working on them
6.5.1. Toyota
6.5.2. SolidEnergy
6.6. Radically different formats become possible
6.6.1. Cable-type battery developed by LG Chem
6.6.2. Large-area multi-stacked textile battery
6.6.3. Stretchable lithium-ion battery
6.6.4. Foldable lithium-ion battery
6.6.5. Fibre-shaped lithium-ion battery
6.6.6. Needle battery
6.6.7. Transparent lithium-ion battery

7. ANODE, CATHODE, ELECTROLYTE, CONSTRUCTION, APPLICATIONS OF THE LITHIUM BATTERIES OF 450 MANUFACTURERS
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form

To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Lithium-ion Batteries 2016-2026
Web Address: http://www.researchandmarkets.com/reports/3764422/
Office Code: SCPLXV3S

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5077</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5383 + USD 57 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7618</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7924 + USD 57 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___ Last Name: ________________________________
Email Address: * ______________________________________
Job Title: __
Organisation: ___
Address: ___
City: ___
Postal / Zip Code: ____________________________________
Country: ___
Phone Number: _______________________________________
Fax Number: ___

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp