For years, the critical communications industry has relied on narrowband LMR (Land Mobile Radio) networks for mission-critical voice and basic data services. Due to the bandwidth limitations of these LMR networks, public safety agencies and other users within the critical communications industry have turned towards commercial LTE networks to support growing demands for mobile broadband services such as video transmission and bandwidth-intensive field applications.

However, most commercial LTE networks do not necessarily meet the priority, security, resilience and availability requirements of the critical communications industry. By providing authority over coverage and capacity, private LTE networks can alleviate these concerns while delivering guaranteed connectivity.

Expected to surpass $800 Million in global investments by the end of 2016, private LTE networks are increasingly becoming the preferred approach to deliver mobile broadband services in the critical communications industry. Fueled by large-scale rollouts in the public safety, energy and other sectors, the market is further expected to grow at a CAGR of 32% between 2016 and 2020.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

Key Questions Answered

The report provides answers to the following key questions:

- How big is the private LTE network opportunity?
- What trends, challenges and barriers are influencing its growth?
- How is the ecosystem evolving by segment and region?
- What will the market size be in 2020 and at what rate will it grow?
- Which submarkets will see the highest percentage of growth?
- How does standardization impact the adoption of LTE for critical communications?
- When will MCPTT (Mission-Critical Push-to-Talk) and proximity services see large-scale proliferation?
- What opportunities exist for commercial mobile operators in the private LTE network ecosystem?
- Will LTE replace GSM-R and other legacy technologies for railway communications and applications?
- Which spectrum band will be the most dominant choice for private LTE network deployments?
- What are the prospects of rapidly deployable tactical LTE networks in the military and public safety sectors?
- Who are the key market players and what are their strategies?
- What strategies should system integrators and vendors adopt to remain competitive?

Key Findings

The report has the following key findings:

- Expected to surpass $800 Million in global investments by the end of 2016, private LTE networks are increasingly becoming the preferred approach to deliver mobile broadband services in the critical communications industry. Fueled by large-scale rollouts in the public safety, energy and other sectors, the market is further expected to grow at a CAGR of 32% between 2016 and 2020.
By the end of 2020, the North America region will account for over 35% of all private LTE investments worldwide. However, largely driven by South Korea's rollout plans for public safety, railway and maritime LTE networks, the Asia Pacific region will continue to retain a strong position in the market.

Several companies, such as TEN (Texas Energy Network) and INET (Infrastructure Networks) in the United States, have strategically deployed private LTE networks in remote, oil-rich areas, to exclusively provide mobile broadband services to energy companies.

To alleviate large-scale infrastructure investments, several European countries are pairing dedicated private mobile core platforms with commercial LTE networks to deliver prioritized mobile broadband services to public safety subscribers.

Conventional LMR industry players are leveraging partnerships with established LTE infrastructure OEMs such as Ericsson, Nokia, Huawei and Samsung, to offer end-to-end private LTE network solutions.

Contents:
1: Introduction
 1.1 Executive Summary
 1.2 Topics Covered
 1.3 Forecast Segmentation
 1.4 Key Questions Answered
 1.5 Key Findings
 1.6 Methodology
 1.7 Target Audience
 1.8 Companies & Organizations Mentioned
2: An Overview of Private LTE Networks
 2.1 Private Mobile Radio Networks
 2.1.1 Addressing the Needs of the Critical Communications Industry
 2.1.2 Evolution from Analog to Digital LMR (Land Mobile Radio) Networks
 2.1.3 The Limitations of LMR Networks
 2.1.4 Moving Towards Commercial Mobile Broadband Technologies
 2.2 LTE for Private Mobile Broadband
 2.2.1 Why LTE?
 2.2.2 Performance Metrics
 2.2.3 Coexistence, Interoperability and Spectrum Flexibility
 2.2.4 A Thriving Ecosystem
 2.2.5 Economic Feasibility
 2.3 Architectural Components of Private LTE Networks
 2.3.1 UE (User Equipment)
 2.3.2 E-UTRAN - The LTE RAN (Radio Access Network)
 2.3.2.1 eNB Base Station
 2.3.3 EPC (Evolved Packet Core) - The LTE Mobile Core
 2.3.3.1 SGW (Serving Gateway)
 2.3.3.2 PGW (Packet Data Gateway)
 2.3.3.3 MME (Mobility Management Entity)
 2.3.3.4 HSS (Home Subscriber Server)
 2.3.3.5 PCRF (Policy Charging and Rules Function)
 2.3.4 IMS (IP-Multimedia Subsystem), Application & Service Elements
 2.3.4.1 IMS Core & VoLTE
 2.3.4.2 MBMS (Multimedia Broadcast Multicast Service)
 2.3.4.3 ProSe (Proximity Services)
 2.3.4.4 Group Communication
 2.3.5 Gateways for LTE-LMR Interworking
 2.3.6 Transport Network
 2.4 Private LTE Network Operational Models
 2.4.1 Independent Private LTE Network
 2.4.2 Managed Private LTE Network
 2.4.3 Commercial LTE Network with Private Mobile Core
 2.4.4 Other Approaches
 2.5 Key Applications of Private LTE Networks
 2.5.1 Video & High-Resolution Imagery Transmission
 2.5.2 Secure & Seamless Mobile Broadband Access
2.5.3 Situational Awareness & Enhanced CAD (Computer Aided Dispatching)
2.5.4 HD Voice & Group Communications
2.5.5 Bandwidth-Intensive Field Applications
2.5.6 PIS (Passenger Information System)
2.5.7 Delay-Sensitive Control of Transport Infrastructure
2.5.8 Location Services & Mapping
2.5.9 Telemetry, Control & Remote Diagnostics
2.6 Market Growth Drivers
2.6.1 Recognition of LTE as the De-Facto Mobile Broadband Standard
2.6.2 Endorsement from the Critical Communications Industry
2.6.3 Growing Demands for High-Speed Data Applications
2.6.4 Economic Feasibility
2.6.5 Spectral Efficiency & Flexible Bandwidth
2.6.6 Lack of Commercial Mobile Network Coverage in Remote Areas
2.6.7 QoS (Quality of Service) & Priority Provisioning
2.6.8 Regional Interoperability
2.7 Market Barriers
2.7.1 Lack of Dedicated Spectrum
2.7.2 Smaller Coverage Footprint than Legacy Private Mobile Networks
2.7.3 Funding Challenges
2.7.4 Issues with Standardization

3: Key Vertical Markets & Case Studies
3.1 Vertical Markets
3.1.1 Public Safety
3.1.2 Military
3.1.3 Energy & Utilities
3.1.4 Transportation
3.1.5 Other Verticals
3.2 Private LTE Network Case Studies
3.2.1 Abu Dhabi Police
3.2.2 Beach Energy
3.2.3 Bilbao Metro
3.2.4 Busan Transportation Corporation
3.2.5 China Southern Power Grid
3.2.6 French Army
3.2.7 German Armed Forces (Bundeswehr)
3.2.8 Harris County
3.2.9 INET (Infrastructure Networks)
3.2.10 Kenyan Police Service
3.2.11 LA-RICS (Los Angeles Regional Interoperable Communications System)
3.2.12 Lijiang Police
3.2.13 Nedaa
3.2.14 Qatar MOI (Ministry of Interior)
3.2.15 Rio Tinto Group
3.2.16 Shanghai Police Department
3.2.17 South Korea's National Disaster Safety Communications Network
3.2.18 TEN (Texas Energy Network)
3.2.19 U.S. Navy
3.2.20 Zhengzhou Metro
3.2.21 Other Engagements

4: Spectrum Allocation, Standardization & Regulatory Initiatives
4.1 Spectrum Allocation for Private LTE Networks
4.1.1 Asia Pacific
4.1.2 Europe
4.1.3 Middle East & Africa
4.1.4 North America
4.1.5 Latin & Central America
4.2 Standardization & Regulatory Initiatives
4.2.1 NPSTC (National Public Safety Telecommunications Council)
4.2.2 TCCA (TETRA and Critical Communications Association)
4.2.3 ETSI (European Telecommunications Standards Institute)
4.2.4 3GPP (3rd Generation Partnership Project)
 4.2.4.1 MCPTT (Mission-Critical Push-to-Talk) for Voice, Video & Data
 4.2.4.2 GCSE (Group Communication System Enablers)
 4.2.4.3 GROUPE (Group Based Enhancements)
 4.2.4.4 D2D Communication & ProSe (Proximity Services)
 4.2.4.5 Resilience & IOPS (Isolated E-UTRAN Operation for Public Safety)
 4.2.4.6 Higher Power User Terminals
 4.2.5 TTA (Telecommunications Technology Association, South Korea)
 4.2.5.1 PS-LTE (Public Safety LTE)
 4.2.5.2 LTE-R (LTE Based Railway Communication System)
 4.2.5.3 LTE-M (LTE-Maritime)
 4.2.6 UIC (International Union of Railways)
 4.2.6.1 Replacing GSM-R with LTE
 4.2.6.2 FRMCS (Future Railway Mobile Communication System) Initiative
 4.2.7 EUAR (European Union Agency for Railways)
 4.2.7.1 Coordinating Efforts for FRMCS

5: Industry Roadmap & Value Chain
5.1 Industry Roadmap
 5.1.1 2016 - 2020: Large-Scale Investments in the Public Safety & Energy Sectors
 5.1.2 2020 - 2025: Moving Towards LTE Based Railway Communications
 5.1.3 2025 - 2030: Continued Investments with 5G Network Rollouts
5.2 Value Chain
 5.2.1 Enabling Technology Providers
 5.2.2 RAN, Mobile Core & Transport Infrastructure OEMs
 5.2.3 Device OEMs
 5.2.4 System Integrators
 5.2.5 Application Developers
 5.2.6 Test, Measurement & Performance Specialists
 5.2.7 Mobile Operators
 5.2.8 MVNOs
 5.2.9 Vertical Market End Users

6: Key Market Players
6.1 Accelleran
6.2 Adax
6.3 Advantech
6.4 Advantech Wireless
6.5 Affirmed Networks
6.6 Airbus Defence and Space
6.7 Air-Lynx
6.8 Airspan Networks
6.9 Alstom
6.10 Altiostar Networks
6.11 Amdocs
6.12 Anritsu Corporation
6.13 Ansaldo STS
6.14 Arcadyn Technology Corporation
6.15 Argela
6.16 Aricent
6.17 ARTel
6.18 Arqiva
6.19 Artemis Networks
6.20 Aselsan
6.21 ASOCS
6.22 ASTRI (Hong Kong Applied Science and Technology Research Institute)
6.23 AT&T
6.24 Athena Wireless Communications
6.25 Athonet
6.26 Avanti Communications Group
6.27 Aviat Networks
6.28 Axis Teknologies
6.29 Axxcelera Broadband Wireless (Moseley Associates)
6.30 Barrett Communications
6.31 Black Box Corporation
6.32 Blackned
6.33 Bombardier Transportation
6.34 Broadcom
6.35 Brocade Communications Systems
6.36 BTI Wireless
6.37 CalAmp Corporation
6.38 Cavium
6.39 CCI (Communication Components Inc.)
6.40 CCI (Competitive Companies, Inc.)
6.41 Crown Castle
6.42 Ceragon
6.43 Challenge Networks
6.44 Ciena Corporation
6.45 Cisco Systems
6.46 Cobham
6.47 Codan Radio Communications
6.48 Comba Telecom Systems Holdings
6.49 CommAgility
6.50 CommScope
6.51 Contela
6.52 Core Network Dynamics
6.53 Coriant
6.54 Corning
6.55 Cybertel Bridge
6.56 Dali Wireless
6.57 Datang Mobile
6.58 DeltaNode (Bird Technologies)
6.59 Dongwon T&I
6.60 DragonWave
6.61 EchoStar Corporation
6.62 EE
6.63 Elbit Systems
6.64 Ericsson
6.65 ETELM
6.66 Etherstack
6.67 Ethertronics
6.68 Exalt Communications
6.69 EXFO
6.70 Expway
6.71 ExteNet Systems
6.72 Federated Wireless
6.73 Fujitsu
6.74 Galtronics Corporation
6.75 Gemtek Technology Company
6.76 GENBAND
6.77 General Dynamics Mission Systems
6.78 Goodman Networks
6.79 GWT (Global Wireless Technologies)
6.80 Harris Corporation
6.81 Hitachi
6.82 HPE (Hewlett Packard Enterprise)
6.83 Huawei
6.84 Hytera Communications Company
6.85 IAI (Israel Aerospace Industries)
6.86 InfoVista
6.87 Inmarsat
6.88 Intel Corporation
6.89 InterDigital
6.90 ip.access
6.91 JMA Wireless
6.92 JRC (Japan Radio Company)
6.93 Juni Global
6.94 Juniper Networks
6.95 JVC KENWOOD Corporation
6.96 Kapsch CarrierCom
6.97 Kathrein-Werke KG
6.98 Keysight Technologies
6.99 Kodiak Networks
6.100 Koning & Hartman
6.101 KT Corporation
6.102 Kudelski Group
6.103 L-3 Communications Holdings
6.104 Lemko Corporation
6.105 Leonardo-Finmeccanica
6.106 LGS Innovations
6.107 Ligado Networks
6.108 Lockheed Martin Corporation
6.109 Marlink
6.110 MER-CellO Wireless Solutions
6.111 Mitel Networks Corporation
6.112 Mitsubishi Electric Corporation
6.113 Motorola Solutions
6.114 Mutualink
6.115 NEC Corporation
6.116 Nemergent
6.117 Netas
6.118 New Postcom Equipment Company
6.119 NI (National Instruments) Corporation
6.120 Nokia Networks
6.121 Northrop Grumman Corporation
6.122 Nutaq
6.123 Oceus Networks
6.124 Octasic
6.125 Panda Electronics (Nanjing Panda Electronics Company)
6.126 Panorama Antennas
6.127 Parallel Wireless
6.128 Pepro
6.129 PMN (Private Mobile Networks)
6.130 Polaris Networks
6.131 Potevio (China Potevio Company)
6.132 Public Wireless
6.133 Qualcomm
6.134 Quanta Computer
6.135 Quell
6.136 Quortus
6.137 Radisys Corporation
6.138 Raytheon Company
6.139 Redline Communications
6.140 RFS (Radio Frequency Systems)
6.141 Rivada Networks
6.142 Rohill
6.143 Samji Electronics Company
6.144 Samsung Electronics
6.145 Sepura
6.146 SerComm Corporation
6.147 SES
6.148 Siemens
6.149 Sierra Wireless
6.150 Siklu
6.151 Simoco
6.152 SiRRAN
6.153 SK Telecom
6.154 SK Telesys
6.155 SLA Corporation
7.4 Segmentation by Region
7.4.1 RAN
7.4.2 EPC & Policy
7.4.3 Mobile Backhaul & Transport
7.5 Asia Pacific
7.5.1 RAN
7.5.2 EPC & Policy
7.5.3 Mobile Backhaul & Transport
7.6 Eastern Europe
7.6.1 RAN
7.6.2 EPC & Policy
7.6.3 Mobile Backhaul & Transport
7.7 Latin & Central America
7.7.1 RAN
7.7.2 EPC & Policy
7.7.3 Mobile Backhaul & Transport
7.8 Middle East & Africa
7.8.1 RAN
7.8.2 EPC & Policy
7.8.3 Mobile Backhaul & Transport
7.9 North America
7.9.1 RAN
7.9.2 EPC & Policy
7.9.3 Mobile Backhaul & Transport
7.10 Western Europe
7.10.1 RAN
7.10.2 EPC & Policy
7.10.3 Mobile Backhaul & Transport

8: Conclusion & Strategic Recommendations
8.1 Why is the Market Poised to Grow?
8.2 Competitive Industry Landscape: Acquisitions, Alliances & Consolidation
8.3 Which Spectrum Bands will Dominate the Market?
8.3.1 700/800/900 MHz
8.3.2 400 MHz
8.3.3 Higher Frequencies
8.4 Monetizing Unused Spectrum
8.5 Opening the Door for Mission-Critical IoT (Internet of Things) Services
8.6 The Race for 5G: Implications for Private Mobile Networks
8.7 MVNO Arrangements for Critical Communications: Opportunities for EPC Investments
8.8 Opportunities for Commercial Mobile Operators
8.8.1 Operator Managed Private LTE Networks
8.8.2 Spectrum Leasing
8.8.3 RAN Sharing: Using Dedicated Spectrum over Commercial LTE Networks
8.9 Geographic Outlook: Which Regions Offer the Highest Growth Potential?
8.10 Which Vertical Sector will Lead the Market?
8.11 3GPP MCPTT (Mission-Critical Push-to-Talk): Timelines for Standardization & Commercial Availability
8.12 Will LTE Replace GSM-R for Railway Communications?
8.12.1 Early Investments in Asia Pacific
8.12.2 Future Prospects
8.12.3 Timeline for Replacing GSM-R Networks
8.13 Rapidly Deployable Tactical Networks for the Public Safety & Military Sectors
8.13.1 VNS (Vehicle Network System)
8.13.2 Tactical SOW (System-On-Wheels)
8.13.3 Tactical NIB (Network-in-a-Box)
8.13.4 Airborne Platforms
8.14 Strategic Recommendations
8.14.1 Enterprises
8.14.2 LTE Infrastructure OEMs
8.14.3 System Integrators
8.14.4 Commercial & Private Mobile Operators

List of Figures
Figure 1: Basic Components of a Digital LMR Network
Figure 2: LTE Speed Compared to 3G & Wi-Fi Networks (Mbps)
Figure 3: Private LTE Network Architecture
Figure 4: Independent Private LTE Network
Figure 5: Managed Private LTE Network
Figure 6: Commercial LTE Network with a Private Mobile Core
Figure 7: Global LTE Subscriptions: 2016 - 2030 (Millions)
Figure 8: Military LTE Network Architecture
Figure 9: LTE ProSe Examples
Figure 10: Private LTE Network Industry Roadmap
Figure 11: Private LTE Network Value Chain
Figure 12: Global Private LTE Network Infrastructure Revenue: 2016 - 2030 ($ Million)
Figure 13: Global Private LTE Network Infrastructure Revenue by Submarket: 2016 - 2030 ($ Million)
Figure 14: Global Private LTE eNB Unit Shipments: 2016 - 2030
Figure 15: Global Private LTE eNB Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 16: Global Private LTE EPC & Policy Revenue: 2016 - 2030 ($ Million)
Figure 17: Global Private LTE Mobile Backhaul & Transport Network Revenue: 2016 - 2030 ($ Million)
Figure 18: Global Private LTE Network Infrastructure Revenue by Vertical: 2016 - 2030 ($ Million)
Figure 19: Global Private LTE Network Infrastructure Revenue in the Public Safety Sector: 2016 - 2030 ($ Million)
Figure 20: Global Private LTE Network Infrastructure Revenue in the Public Safety Sector by Submarket: 2016 - 2030 ($ Million)
Figure 21: Global Private LTE eNB Unit Shipments in the Public Safety Sector: 2016 - 2030
Figure 22: Global Private LTE eNB Unit Shipment Revenue in the Public Safety Sector: 2016 - 2030 ($ Million)
Figure 23: Global Private LTE EPC & Policy Revenue in the Public Safety Sector: 2016 - 2030 ($ Million)
Figure 24: Global Private LTE Mobile Backhaul & Transport Network Revenue in the Public Safety Sector: 2016 - 2030 ($ Million)
Figure 25: Global Private LTE Network Infrastructure Revenue in the Military Sector: 2016 - 2030 ($ Million)
Figure 26: Global Private LTE Network Infrastructure Revenue in the Military Sector by Submarket: 2016 - 2030 ($ Million)
Figure 27: Global Private LTE eNB Unit Shipments in the Military Sector: 2016 - 2030
Figure 28: Global Private LTE eNB Unit Shipment Revenue in the Military Sector: 2016 - 2030 ($ Million)
Figure 29: Global Private LTE EPC & Policy Revenue in the Military Sector: 2016 - 2030 ($ Million)
Figure 30: Global Private LTE Mobile Backhaul & Transport Network Revenue in the Military Sector: 2016 - 2030 ($ Million)
Figure 31: Global Private LTE Network Infrastructure Revenue in the Energy & Utilities Sector: 2016 - 2030 ($ Million)
Figure 32: Global Private LTE Network Infrastructure Revenue in the Energy & Utilities Sector by Submarket: 2016 - 2030 ($ Million)
Figure 33: Global Private LTE eNB Unit Shipments in the Energy & Utilities Sector: 2016 - 2030
Figure 34: Global Private LTE eNB Unit Shipment Revenue in the Energy & Utilities Sector: 2016 - 2030 ($ Million)
Figure 35: Global Private LTE EPC & Policy Revenue in the Energy & Utilities Sector: 2016 - 2030 ($ Million)
Figure 36: Global Private LTE Mobile Backhaul & Transport Network Revenue in the Energy & Utilities Sector: 2016 - 2030 ($ Million)
Figure 37: Global Private LTE Network Infrastructure Revenue in the Transportation Sector: 2016 - 2030 ($ Million)
Figure 38: Global Private LTE Network Infrastructure Revenue in the Transportation Sector by Submarket: 2016 - 2030 ($ Million)
Figure 39: Global Private LTE eNB Unit Shipments in the Transportation Sector: 2016 - 2030
Figure 40: Global Private LTE eNB Unit Shipment Revenue in the Transportation Sector: 2016 - 2030 ($ Million)
Figure 41: Global Private LTE EPC & Policy Revenue in the Transportation Sector: 2016 - 2030 ($ Million)
Figure 42: Global Private LTE Mobile Backhaul & Transport Network Revenue in the Transportation Sector: 2016 - 2030 ($ Million)
Figure 43: Global Private LTE Network Infrastructure Revenue in Other Sectors: 2016 - 2030 ($ Million)
Figure 44: Global Private LTE Network Infrastructure Revenue in Other Sectors by Submarket: 2016 - 2030 ($ Million)
Figure 45: Global Private LTE eNB Unit Shipments in Other Sectors: 2016 - 2030
Figure 46: Global Private LTE eNB Unit Shipment Revenue in Other Sectors: 2016 - 2030 ($ Million)
Figure 47: Global Private LTE EPC & Policy Revenue in Other Sectors: 2016 - 2030 ($ Million)
Figure 48: Global Private LTE Mobile Backhaul & Transport Network Revenue in Other Sectors: 2016 - 2030 ($ Million)
Figure 49: Private LTE Network Infrastructure Revenue by Region: 2016 - 2030 ($ Million)
Figure 50: Private LTE eNB Unit Shipments by Region: 2016 - 2030
Figure 51: Private LTE eNB Unit Shipments Revenue by Region: 2016 - 2030 ($ Million)
Figure 52: Private LTE EPC & Policy Revenue by Region: 2016 - 2030 ($ Million)
Figure 53: Private LTE Mobile Backhaul & Transport Network Revenue by Region: 2016 - 2030 ($ Million)
Figure 54: Asia Pacific Private LTE Network Infrastructure Revenue: 2016 - 2030 ($ Million)
Figure 55: Asia Pacific Private LTE eNB Unit Shipments: 2016 - 2030
Figure 56: Asia Pacific Private LTE eNB Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 57: Asia Pacific Private LTE EPC & Policy Revenue: 2016 - 2030 ($ Million)
Figure 58: Asia Pacific Private LTE Mobile Backhaul & Transport Network Revenue: 2016 - 2030 ($ Million)
Figure 59: Eastern Europe Private LTE Network Infrastructure Revenue: 2016 - 2030 ($ Million)
Figure 60: Eastern Europe Private LTE eNB Unit Shipments: 2016 - 2030
Figure 61: Eastern Europe Private LTE eNB Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 62: Eastern Europe Private LTE EPC & Policy Revenue: 2016 - 2030 ($ Million)
Figure 63: Eastern Europe Private LTE Mobile Backhaul & Transport Network Revenue: 2016 - 2030 ($ Million)
Figure 64: Latin & Central America Private LTE Network Infrastructure Revenue: 2016 - 2030 ($ Million)
Figure 65: Latin & Central America Private LTE eNB Unit Shipments: 2016 - 2030
Figure 66: Latin & Central America Private LTE eNB Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 67: Latin & Central America Private LTE EPC & Policy Revenue: 2016 - 2030 ($ Million)
Figure 68: Latin & Central America Private LTE Mobile Backhaul & Transport Network Revenue: 2016 - 2030 ($ Million)
Figure 69: Middle East & Africa Private LTE Network Infrastructure Revenue: 2016 - 2030 ($ Million)
Figure 70: Middle East & Africa Private LTE eNB Unit Shipments: 2016 - 2030
Figure 71: Middle East & Africa Private LTE eNB Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 72: Middle East & Africa Private LTE EPC & Policy Revenue: 2016 - 2030 ($ Million)
Figure 73: Middle East & Africa Private LTE Mobile Backhaul & Transport Network Revenue: 2016 - 2030 ($ Million)
Figure 74: North America Private LTE Network Infrastructure Revenue: 2016 - 2030 ($ Million)
Figure 75: North America Private LTE eNB Unit Shipments: 2016 - 2030
Figure 76: North America Private LTE eNB Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 77: North America Private LTE EPC & Policy Revenue: 2016 - 2030 ($ Million)
Figure 78: North America Private LTE Mobile Backhaul & Transport Network Revenue: 2016 - 2030 ($ Million)
Figure 79: Western Europe Private LTE Network Infrastructure Revenue: 2016 - 2030 ($ Million)
Figure 80: Western Europe Private LTE eNB Unit Shipments: 2016 - 2030
Figure 81: Western Europe Private LTE eNB Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 82: Western Europe Private LTE EPC & Policy Revenue: 2016 - 2030 ($ Million)
Figure 83: Western Europe Private LTE Mobile Backhaul & Transport Network Revenue: 2016 - 2030 ($ Million)
Figure 84: Global EPC Investments in Critical Communications MVNO Networks: 2016 - 2030 ($ Million)
Figure 85: Global Private LTE Network Infrastructure Spending Breakdown by Vertical: 2016 (%)
Figure 86: Global Private LTE Network Investments in Railway Communications: 2016 - 2030 ($ Million)
Figure 87: Global Public Safety & Military LTE VNS (Vehicle Network System) eNB Installed Base: 2016 - 2030
Figure 88: Global Public Safety & Military LTE SOW (System-on-Wheels) eNB Installed Base: 2016 - 2030
Figure 89: Global Public Safety & Military LTE NIB (Network-in-a-Box) eNB Installed Base: 2016 - 2030
Figure 90: Global Public Safety & Military LTE Airborne eNB Platform Installed Base: 2016 - 2030

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3765973/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/3765973/
Office Code: SCBRF5AY

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 2500</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td></td>
<td>USD 3500</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World