Smart Coatings Markets 2016-2025

Description: This research is a compendium report on the smart coatings business since 2011. And while we have issued more focused studies on more specific coatings and applications this study provides a unique collection of market analysis and forecasting that provides companies a single source of comprehensive smart coatings data.

Our 2016 study will continue its evolution by focusing on where we see significant applications for coatings (vs surfaces and applied films) across targeting industry sectors. The forecasts will be even more granular than in past years.

We see smart coatings as a key opportunity for coatings companies looking to find new growth opportunities in current and new markets. This report will provide an invaluable resource to companies who supply base materials and additives, coatings and paints, manufacturers within the supply chain and the end users themselves.

Fully-focused on coatings: Electrochromic coatings, hydrophilic coatings, hydrophobic and omniphobic coatings, microencapsulation and vascular self-healing coatings, multifunctional coatings, other self-dimming and color shifting coatings, photovoltaic coatings, piezoelectric and piezo-magnetic, self-healing polymers polymer foams and hydrogels, smart anti-corrosion/anti-fouling, smart antimicrobial and antifungals.

Manufacturing emphasis: The report will give special emphasis to novel coating technologies (how the coating is put on the substrate) and formulation/synthesis (how the coating is actually made) approaches for coatings and especially how these can be scaled up to volume production.

High-level of granularity in forecasts in lengthy report: We anticipate that this report will be 250 pages plus, with heavy emphasis on detailed forecasts constructed from end user demand, industry and market specific factors.

Contents:

Executive Summary
E.1 Changes since n-tech’s 2015 report on smart coatings
E.2 Emerging opportunities by type of smart coating
E.2.1 Self-healing coatings
E.2.3 Self-cleaning and anti-corrosion coatings
E.2.4 Self-dimming and color-shifting coatings
E.2.5 Smart antimicrobial and antifungal coatings
E.2.6 Photovoltaic coatings
E.2.7 Piezoelectric coatings
E.2.8 Aerogels
E.3 Manufacturing: Opportunities and challenges
E.3.1 Formulation and synthesis of smart coatings
E.3.2 Novel coatings technologies for smart coatings
E.4 Changes in the smart coatings supply chain
E.5 A note on military markets
E.6 Sources of funding for smart coatings startups
E.7 Forecasting methodology and summary of ten-year forecasts for smart coatings markets
E.7.1 Sources of data
E.7.2 Economic assumptions
E.7.3 Alternative Scenarios
E.7.4 Summary of ten-year forecasts of smart coatings market by end-user sector
E.7.5 Summary of ten-year forecast of smart coatings by end-user sector
Chapter One: Introduction
1.1 Background to the report
1.2 Objectives and scope of this report
1.3 Methodology of this report
1.4 Plan of this report

Chapter Two: Smart Coatings: Materials, Products and Technologies
2.1 Self-healing coatings
2.1.1 Reversible polymers
2.1.2 Polymer foams
2.1.3 Role of hydrogels and shape memory polymers
2.1.4 Microencapsulated and vascular-embedded coatings
2.2 Self-cleaning, smart anti-corrosion and smart anti-fouling coatings
2.2.1 Hydrophilic coatings
2.2.2 Hydrophobic, oleophobic and omniphobic coatings
2.2.3 Novel catalysts for self-cleaning coatings
2.2.4 Electrostatic coatings for self-cleaning
2.2.5 Smart anti-corrosion and wear-resistant coatings
2.2.6 Smart anti-fouling coatings
2.3 Smart antimicrobials and antifungals
2.3.1 Smart Silver as an antimicrobial
2.3.2 Hydrogels as a smart antimicrobial coating
2.3.3 Other materials as smart antimicrobial coatings
2.3.4 Making smart antimicrobials smarter
2.4 Self-dimming and color-shifting coatings
2.4.1 Electrochromic coatings
2.4.2 Other self-dimming coatings
2.4.3 Color-shifting paints and inks
2.5 Photovoltaic coatings
2.6 Piezoelectric and piezomagnetic coatings
2.7 The trend towards multifunctional coatings
2.8 Environmental issues
2.9 Key points from this chapter

Chapter Three: Smart Coatings: Formulations, Synthesis and Coating Technologies
3.1 Current trends in formulation and synthesis of smart coatings
3.2 Coating technology trends: Implications for smart coatings
3.3 Growing role of nanotechnology in the smart coatings business
3.3.1 Use of nano-patterning in smart coatings
3.3.2 Smart nanocoatings
3.4 Printed smart inks?
3.5 Self-assembly and self-stratification as a way to reduce manufacturing costs
3.5.1 Self-assembled monolayers
3.6 Scaling up novel coating technologies to high volumes
3.7 Key points from this chapter

Chapter Four: Markets for Smart Coatings in the Aerospace Industry
4.1 Key drivers for smart coatings in the aerospace industry: Implications for smart coatings
4.1.1 Increased military budgets
4.1.2 Fuel prices and light-weighting: Balancing each other
4.1.3 Competition in the airline industry
4.1.4 Rise of the UAVs
4.2 Smart windows coatings for the aerospace industry
4.3 Smart-anticorrosion coatings for the aerospace industry
4.4 Smart coatings for aircraft interiors
4.5 Smart coatings from leading aircraft manufacturers
4.6 Ten-year forecasts of smart coatings use by type of coatings
4.6.1 Civil aviation
4.6.2 Military aircraft and helicopters
4.6.3 Space vehicles and UAVs
4.6.4 Forecast by world region
4.6.5 Summary of forecasts
4.7 Key points from this chapter
Chapter Five: Markets for Smart Coatings in Marine Applications
5.1 Smart anti-fouling coatings
5.1.1 The downside of copper
5.1.2 Smart coating alternatives to copper for anti-fouling applications
5.2 Other potential applications for smart coatings in marine markets
5.2.1 Interior surfaces
5.3 Ten-year forecasts of smart coatings use by type of coatings
5.3.1 Large ships
5.3.2 Small craft
5.3.3 Naval vessels
5.3.4 Forecast by world region
5.3.5 Summary of forecasts
5.4 Key points from this chapter

Chapter Six: Markets for Smart Coatings in the Automotive Industry
6.1 Key drivers for smart coatings in the automotive industry: Implications for smart coatings
6.1.1 Fuel prices and light-weighting
6.1.2 More glass
6.1.3 Driverless cars
6.1.4 Design competition in the automotive industry
6.2 Coatings for smart windows and mirrors
6.2.1 SPD
6.2.2 Alternatives to SPD in the automotive space
6.2.3 Electrochromic mirrors
6.3 Coatings for self-healing auto glass
6.4 Exterior paints and coatings
6.4.1 From scratch-resistant coatings to self-healing body coatings
6.4.2 From polish to self-cleaning coatings
6.5 Smart anti-corrosion coatings for car exteriors and engines
6.5.1 Car bodies and underseals
6.5.2 Braking and suspension systems
6.5.3 Smart coatings as lubricants
6.6 Smart coatings for car and truck interiors
6.7 Current smart coatings projects by leading car and truck makers
6.8 Ten-year forecasts of smart coatings use by type of coatings
6.8.1 Luxury vehicles
6.8.2 Family vehicles
6.8.3 Trucks, buses and military vehicles
6.8.4 Forecast by world region
6.8.5 Summary of forecasts
6.9 Smart coatings in the automotive aftermarket
6.10 Key points from this chapter

Chapter Seven: Markets for Smart Coatings in the Construction Industry
7.1 Key drivers for smart coatings in the construction industry: Implications for smart coatings
7.1.1 Green building and LEED design
7.1.2 Energy efficiency
7.1.3 Demographics
7.2 Self-cleaning coatings for the construction industry
7.2.1 The future of coatings for self-cleaning window glass
7.2.2 Self-cleaning exterior building paints and coatings
7.2.3 Potential for self-cleaning interior wall and floor coatings
7.3 Markets and products for self-healing building coatings
7.3.1 Interior
7.3.2 Exterior
7.4 Coatings for smart windows
7.4.1 Electrochromic coatings
7.4.2 Alternatives to electrochromic coatings for smart windows
7.5 Color-shifting paints: What type of buildings need them?
7.6 Protecting building surfaces with smart antimicrobials
7.7 Smart coatings for BIPV
7.8 Ten-year forecasts of smart coatings use by type of coatings
Chapter Eight: Smart Coatings in Consumer Product Markets
8.1 Key drivers for smart coatings in the construction industry: Implications for smart coatings
8.1.1 Trend towards smart devices and wearables
8.1.2 Fashion and consumer product design trends
8.1.2 Demographics
8.2 Price/performance trade offs for smart coatings in the consumer sector
8.3 Self-cleaning and antimicrobial coatings for consumer products
8.3.1 Consumer electronics and appliances
8.3.2 Furniture
8.3.3 Consumer electronics
8.3.4 Textiles, clothing and carpets
8.4 Smart antimicrobials for consumer products
8.4.1 Consumer electronics and appliances
8.4.2 Furniture
8.4.3 Textiles and clothing
8.4.4 Textiles and clothing
8.5 Self-healing coatings as an alternative to anti-scratch coatings in consumer products
8.5.1 Consumer electronics and appliances
8.5.2 Furniture and self-healing wood
8.6 Special considerations for clothing and textiles
8.6.1 Preserving color and smart color shifting coatings
8.6.2 Breathability
8.7 Smart consumer glass coatings
8.7.1 Self-cleaning display screens
8.7.2 Smart coatings for mirrors
8.8 Ten-year forecasts of smart coatings use by type of coatings
8.8.1 Furniture
8.8.2 Commercial and industrial buildings
8.8.3 Residential buildings
8.8.4 Forecast by world region
8.8.5 Summary of forecasts
8.9 Smart coatings as a retail product
8.10 Key points from this chapter

Chapter Nine: Markets for Smart Coatings in Medical and Healthcare Markets
9.1 Drivers for smart coatings in medical/healthcare markets: Implications for smart coatings
9.1.1 Strain-resistant microbes
9.1.2 Hospital acquired infections
9.1.3 Demographics: Aging populations
9.1.4 Short hospital stays and bringing medicine closer to the patient
9.1.5 New payment and insurance arrangements
9.2 The business case for smart antimicrobials
9.3 Materials platforms for smart antimicrobials
9.3.1 Silver Nanoparticles
9.3.2 Peptides
9.3.3 Hydrogels for bioactive coatings
9.3.4 Smart polymers and smart antimicrobials together at last
9.3.5 Nanotechnology and antimicrobials
9.3.6 Other selective antimicrobials and smart anti-inflammatories
9.4 Self-cleaning antimicrobials
9.4.1 Antimicrobials and super-hydrophobic materials
9.5 Smart coatings for drug delivery
9.6 Smart coatings and biocompatibility
9.7 Ten-year forecasts of smart coatings use by type of coatings
9.7.1 Implants
9.7.2 Surgical instruments
9.7.3 Surfaces in healthcare facilities
9.7.4 Medical uniforms and medical monitoring clothing
9.7.5 Forecast by world region
9.7.6 Summary of forecasts
9.8 Key points from this chapter

Chapter Ten: Markets for Smart Coatings in Energy-Related Markets
10.1 Key drivers for smart coatings in energy-related markets: Implications for smart coatings
10.1.1 Energy price trends and energy efficiency
10.1.2 Shift to alternative energy sources
10.2 Photovoltaics
10.2.1 Photovoltaic coatings
10.2.2 Self-cleaning coatings for solar panels
10.2.3 Smarter anti-reflective coatings for solar panels
10.3 Fuel cells, batteries and smart coatings
10.4 Smart coatings for wind and gas turbines
10.5 Smart coatings for oil slick removal
10.6 Ten-year forecasts of smart coatings use by type of coatings
10.6.1 Oil industry
10.6.2 Traditional electricity generation
10.6.3 Wind generation
10.6.4 Photovoltaics
10.6.5 Fuel cells and batteries
10.6.6 Forecast by world region
10.6.7 Summary of forecasts
10.7 Key points from this chapter

Chapter Eleven: Other Military Markets for Smart Coatings
11.1 The military’s role in funding smart coatings
11.2 Military applications covered in previous chapters
11.3 Smart coatings for camouflage
11.4 Smart coatings for the detection of toxic substances
11.5 Smart coatings for military uniforms
11.6 Ten-year forecasts of smart coatings use by type of coatings
11.6.1 Camouflage
11.6.2 Toxin detection
11.6.3 Military uniforms
11.6.4 Forecast by world region
11.6.5 Summary of forecasts
11.7 Key points from this chapter

Acronyms and abbreviations used in this report
About the author

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3771249/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Smart Coatings Markets 2016-2025
Web Address: http://www.researchandmarkets.com/reports/3771249/
Office Code: SCPL6ZDW

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 5495</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users</td>
<td></td>
<td>USD 6495</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td></td>
<td>USD 7495</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __ Last Name: __
Email Address: * __
Job Title: __
Organisation: ___
Address: ___
City: ___
Postal / Zip Code: ___
Country: __
Phone Number: __
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World