
Description: Sensors and Embedded Systems work together to provide one of the most important aspects of the Internet of Things (IoT): Detecting changes in an object (device or asset) and/or the environment, allowing for capture of relevant data for real-time and/or post-processing. Sensors are used for detection of changes in the physical and/or logical relationship of one object to another(s) and/or the environment.

Physical changes may include temperature, light, pressure, sound, and motion. Logical changes include the presence/absence of an electronically traceable entity, location, and/or activity. Within an IoT context, physical and logical changes are equally important.

Important sensor types in an Industrial IoT (IIoT) context include:
- Acoustic
- Ambient Light/Optical
- Electric/Magnetic
- Force/Pressure
- Chemicals/Gas/Radiation
- Humidity
- Leakage/Level/Flow
- Locked/Unlocked
- Motion/Acceleration
- Temperature

IoT demands a different set of microprocessors, drivers, peripherals, batteries and operating systems than conventional Embedded System used in general purpose computing systems. Conventional Embedded Systems are not competent to deliver what the IoT is expecting from an embedded device networked in IoT and it brings great challenges to develop or transform contemporary embedded system into an IoT enabled smart embedded system.

Microelectromechanical Systems (MEMS) will evolve significantly as IoT itself evolves. As IoT becomes ubiquitous, and as electronics miniaturization marches onward, Nanoelectromechanical systems (NEMS) will eventually become prevalent, ushering into existence an entirely new universe of connectivity, systems integration, and data ecosystem.

This research assesses the overall sensor marketplace for IoT, evaluates leading vendors, identifies key IoT functionality in support of sensors, and forecasts the market for sensor adoption and revenue. This report also provides analysis of the products that will be developed to support IoT, changes in traditional RTOS required to match performance with IoT, changes in hardware required to match needs of IoT, types of peripherals, and emerging tools to support processing of embedded systems in IoT.

Key Findings:
- There will be significant increase in COTS as seamless and efficient go-to-market execution is a key need for IoT
- APAC represents a fast growing region that is anticipated to generate $26 billion with a CAGR of 14.9% in the year 2021
- The majority of embedded systems will be in building automation, healthcare, automobile, Oil and Gas and Utility industries
- Use of IoT and embedded system will be high in EMEA due to positive response to Industrial IoT and growth of embedded systems in electrical grids, automobile and healthcare.
- The markets in EMEA through 2021 will reach to $112 billion with a CAGR of 19%

Target Audience:
- MEMS suppliers
- Sensor companies
- Internet of Things companies
- Wireless device manufacturers
- Computer and semiconductor companies
- Embedded hardware, software and OS providers
- Mobile/wireless network operators and service providers

Contents:

1 Introduction
 1.1 Scope
 1.2 Target Audience
 1.3 Companies in Report
2 Executive Summary
3 Overview
 3.1 Sensors are the Key Enablers for IoT
 3.2 Role of Sensors in IoT
 3.3 Smart Sensors and Intelligent Endpoints
 3.3.1 Intelligence at the Edge of the Network
 3.3.2 Key Differentiations of Smart Sensors
 3.4 High Potential Smart Sensor Applications
 3.4.1 Smart Home
 3.4.2 Smart Buildings and Enterprise Automation
 3.4.3 Smart Cities
 3.4.4 Smart Manufacturing
 3.4.5 Smart Industrial Processes
4 Sensor Technology and Developments
 4.1 Architecture of Conventional Sensor
 4.2 Smart Sensor Architecture
 4.2.1 Transducer Electronic Data Sheets (TEDS)
 4.3 Wireless Sensor Networks (WSN)
 4.3.1 Sensor Nodes
 4.3.2 WSN Topologies
 4.3.3 Applications and Challenges
 4.4 Virtual / Soft Sensors, Multi-sensing, and Sensor Fusion
 4.5 Role of WSN and Sensor Fusion in IoT
 4.5.1 IoT Protocols used in WSN
 4.5.1.1 ZigBee Alliance
 4.5.1.2 Z-Wave Alliance
 4.5.1.3 Insteon
 4.5.1.4 Digital Living Network Alliance (DLNA)
 4.5.1.5 Thread
 4.6 Sensor Analytics
 4.6.1 Data Visualization
 4.6.2 Data Infrastructure Issues
 4.7 Sensor and Intelligent Endpoint Analytics
5 Sensors and Intelligent Endpoint Outlook and Forecasts
 5.1 Smart Sensors Demand 2016 - 2021
 5.2 Intelligent Automation a Key Market Driver for Smart Sensors
 5.3 Demand for Sensors by Industry Category 2016 - 2021
 5.4 EMEA to Lead the Regional Markets for IoT Sensors through 2021
6 Future of Sensors in IoT
 6.1 Sensor Data Management and IoT Security/Privacy
 6.2 Roadmap to One Trillion Sensors
 6.3 Opportunity for Sensor Manufacturers
 6.4 Use of IPV6 brings New Opportunities from Massive Connectivity
7 Companies and Solutions
 7.1 365 Agile Limited (365 Agile Group Plc)
 7.2 Ambiq Micro
 7.3 B+B SmartWorx
7.4 Bosch Connected Devices and Solutions GmbH (BCDS)
7.5 Digi International
7.6 Fairchild Semiconductors International
7.7 LeddarTech Inc.
7.8 Nanjing IoT Sensor Technology Co., Ltd.
7.9 NYCE Sensors Inc.
7.10 Open Sensors Ltd.
7.11 Sensata Technologies
7.12 Seraphim Sense Ltd.
7.13 Silicon Laboratories, Inc.
7.14 Texas Instruments Inc.
7.15 Worldsensing
7.16 Wovyn LLC.

Figures

Figure 1: Fog Computing in IoT
Figure 2: Fog Computing and Managing Intelligent Endpoint Data
Figure 3: Elements of Traditional Sensor
Figure 4: Elements of Smart Sensor
Figure 5: Smart Sensor Model
Figure 6: Smart Sensor Model with Functional Partitioning
Figure 7: Sensor Node Components
Figure 8: Wireless Sensor Network Topologies
Figure 9: Sensor and Intelligent Endpoint Analytics
Figure 10: Global IoT Markets 2016 - 2021
Figure 11: Global Opportunity Forecast for Development of Smart Sensors 2016 – 2021
Figure 12: Markets for Smart Sensors by IoT Type 2016 – 2021
Figure 13: Markets for Sensor by Industry Category 2015 and 2020
Figure 14: Demand for Sensor by Industry Category 2015 and 2020
Figure 15: Markets for IoT Smart Sensors by Region 2016 – 2021
Figure 16: IoT Infrastructure, Platform, and Software Mediation
Figure 17: Phase One: Limited IoT Data Sharing without Formalized Mediation
Figure 18: Phase Two: IoT Data Sharing between Limited Industries
Figure 19: Phase Two: Broadly shared IoT Data across Industries and between Competitors

Tables

Table 1: Overview of TEDs
Table 2: Global IoT Markets 2016 - 2021
Table 3: Global Opportunity Forecast for Development of Smart Sensors 2016 – 2021
Table 4: Markets for Smart Sensors by IoT Type 2016 – 2021
Table 5: Markets for Smart Sensors by Industry Sector 2016 - 2021
Table 6: Markets for IoT Smart Sensors by Region 2016 – 2021

1 Introduction
1.1 Scope of Report
1.2 Intended Audience
1.3 Companies in Report
2 Executive Summary
3 Overview
3.1 Introduction to IoT
3.1.1 Consumer IoT
3.1.2 Industrial IoT (IIoT)
3.2 Embedded Systems in IoT
3.3 Key Embedded Devices used in IoT
3.3.1.1 Short Range Low Power Radio Devices
3.3.2 Network Devices: Gateway / Hub / Router / Bridges
3.3.3 Sensors and Actuators
3.3.4 Edge Devices
3.3.5 Wearables
3.4 Role of the Embedded Systems in IoT
3.5 Real-time vs. Standard Embedded Systems
3.6 Working Principal of the Embedded Systems in IoT
3.7 Examples of Connected Embedded Devices in IoT
3.8 Global Markets for Embedded Systems
4 Embedded System Technology and Developments
4.1 Embedded Devices and IoT Infrastructure Architecture
4.2 Key Technology Developments in Embedded System for IoT
4.3 Core Embedded Systems Infrastructure
4.3.1 Microprocessor / Microcontroller
4.3.1.1 Reduced Instruction Set Computing (RISC) Chips
4.3.1.2 System on Chip (SoC) (AlSC / FPGA)
4.3.2 Embedded Software
4.3.3 Next Generation Real Time Operating Systems (RTOS)
4.3.3.1 Key Next Generation RTOS Features
4.3.3.1.1 Scalability
4.3.3.1.2 Modularity
4.3.3.1.3 Connectivity
4.3.3.1.4 Reliability
4.3.4 Embedded System Software Design Tools (Debuggers, Compilers and Assemblers)
4.3.5 Peripherals
5 Global Market for Embedded Systems in IoT 2016 – 2021
5.1 The $1.6 Trillion IoT Business
5.1.1 Markets for IoT 2016 - 2021
5.2 Markets for Embedded Systems 2016 - 2021
5.2.1 Markets for Hardware and Software Components in Embedded Systems 2016 – 2021
5.2.2 Market for Microcontrollers and Other Hardware Components 2016 – 2021
5.2.3 Markets for Software Components in Embedded Systems 2016 – 2021
5.2.4 Regional Markets for Embedded Systems 2016 – 2021
5.2.5 Markets for Embedded Systems in North America 2016 - 2021
5.2.6 Markets for Embedded Systems in EMEA 2016 - 2021
5.2.7 Markets for Embedded Systems in APAC 2016 - 2021
5.2.8 Markets for Embedded Systems in CALA 2016 - 2021
5.2.9 Markets for Embedded Systems by Industry 2016 – 2021
6 Embedded Systems in IoT Industry Analysis
6.1 Next Generation RTOS to Drive Embedded Expansion in IoT
6.2 Next Generation Chips in Development to support IoT Needs
6.3 Focus to be on Small Devices
6.4 Time Savings for Go to Market to Drive Demand for COTS
6.5 Embedded SIM (eSIM)
7 Embedded Systems in IoT Vendor Landscape
7.1 Hardware Vendors
7.1.1 ARM Holdings
7.1.2 Cisco System Inc.
7.1.2.1 Cisco Industrial Networks
7.1.2.2 Cisco Embedded Networks
7.1.3 Echelon Corporation
7.1.3.1 Echelon's IzoT platform
7.1.4 GreenPeak
7.1.5 Intel Corporation
7.1.6 Microchip Technology Inc.
7.1.7 Micron Technology Inc.
7.1.8 MediaTek Inc.
7.1.9 Qualcomm Atheros Inc.
7.1.10 Renesas Electronics Corporation
7.1.11 STMicroelectronics
7.1.12 Samsung Developers
7.1.13 Texas Instruments
7.2 Software Vendors
7.2.1 Contiki
7.2.2 Lynx Software Technologies, Inc.
7.2.3 Oregan Networks Ltd.
7.2.4 Wind River
7.2.4.1 VxWorks 7 for IoT
7.3 Other Platforms/ Alliances / Peripherals
7.3.1 Digital Living Network Alliance (DLNA)
7.3.2 Insteon
7.3.3 GE Software
7.3.3.1 GE Predicitivity Solution
7.3.3.2 GE Predix Platform
7.3.4 Marvell
7.3.5 Nest Labs.
7.3.6 Netgear
7.3.7 Netgem
7.3.8 Object Management Group (OMG)
7.3.8.1 Unified Component Model for Distributed, Real-Time Embedded Systems (UCM)
7.3.9 Technicolor
7.3.10 ZigBee Alliance
7.3.11 Z-Wave Alliance

Figures

Figure 1: Mesh Networks
Figure 2: Embedded Devices and IoT Infrastructure Architecture
Figure 3: Core Embedded System Architecture
Figure 4: Global IoT Market 2016 - 2021
Figure 5: Markets for Embedded Systems in IoT 2016 - 2021
Figure 6: Markets for Embedded Systems in IoT by Products: 2016 - 2021
Figure 7: Regional Markets for Embedded Systems in IoT 2016 - 2021
Figure 8: Embedded Systems in IoT by Industry 2016 - 2021
Figure 9: Anatomy of the IzoT Platform

Tables

Table 1: Comparison between Standard and Real-time Embedded Systems
Table 2: Leading Microprocessors used in Embedded Systems
Table 3: Leading Proprietary RTOS used in Embedded Systems
Table 4: Global IoT Markets 2016 - 2021
Table 5: Markets for Embedded Systems in IoT 2016 – 2021
Table 6: Markets for Embedded Systems Components: 2016 – 2021
Table 7: Regional Markets for MCU/MPU in Embedded Systems for IoT 2016 - 2021
Table 8: Regional Markets for Memory in Embedded Systems for IoT 2016 - 2021
Table 9: Regional Markets for Peripherals in Embedded Systems for IoT 2016 - 2021
Table 10: Regional Markets for RTOS in Embedded Systems for IoT 2016 - 2021
Table 11: Regional Markets for Embedded Software in IoT 2016 - 2021
Table 12: Regional Markets for Tools in Embedded Systems for IoT 2016 - 2021
Table 13: Regional Markets for Embedded Systems in IoT 2016 - 2021
Table 14: NA Market for Embedded Systems in IoT by Category 2016 - 2021
Table 15: EMEA Market for Embedded Systems in IoT by Category 2016 - 2021
Table 16: APAC Market for Embedded Systems in IoT by Category 2016 - 2021
Table 17: CALA Market for Embedded systems in IoT by Category 2016 - 2021
Table 18: Embedded Systems in IoT by Industry 2016 - 2021

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3774872/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

| Web Address: | http://www.researchandmarkets.com/reports/3774872/ |
| Office Code: | SC |

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Electronic (PDF) - Single User: USD 2995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td>USD 3995</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide:</td>
<td>USD 6995</td>
</tr>
</tbody>
</table>

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>_________________________________</td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets, Guinness Center, Taylors Lane, Dublin 8, Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at
http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World