Opportunities for Composites in the Global Railway Market 2014-2019

Description: Composites shipments in the global rail market is expected to grow to $876 million in 2019. The major drivers for composites in the global rail market are lower cost over the lifetime of the parts, FST properties, weight reduction, high growth in high speed rail, change in technologies, fuel efficiency and operational costs, and passenger safety.

The report analyses the global rail market by segments and has come up with a comprehensive research report “Opportunities for Composites in the Global Railway Market 2014–2019.” This report provides an analysis of the global rail market including an analysis of market trends, competitive landscapes, company profiles, emerging trends, and key drivers of industry growth. The study also includes the trends and forecasts for the global rail market through 2019, segmented by type of resins and reinforcements, manufacturing processes as well as by regions which are listed below.

The global rail composite market by type of resins used:
- Polyester
- Phenolic
- Vinyl Ester
- Epoxy
- Others

The global rail composites by type of reinforcements:
- Glass fiber
- Carbon fiber
- Others

The global rail composites by region:
- NA
- Europe
- APAC and ROW

The global rail composites by manufacturing processes:
- Open mold
- Pultrusion
- VARTM
- RTM
- SCRIMP
- Injection molding
- Others

On the basis of its comprehensive research, the report forecasts that the global rail composites will grow moderately during 2014-2019. Bombardier, Alstom, Siemens, GE, China CSR, China CNR are among the major rail manufacturers. Regular innovation of the products is very important for companies to sustain their successful positions in the market.

This unique report will provide you with valuable information, insights, and tools needed to identify new growth opportunities and operate your business successfully in this market. This report will save hundreds of hours of your own personal research time and will significantly benefit you in expanding your business in this market. In today's stringent economy, you need every advantage that you can find.

To make any investment, business or strategic decisions, you need timely and adequate information. This
market report fulfills this core need. This is an indispensable reference guide for composite material suppliers, product manufacturers, OEMs, investors, researchers, engineers, distributors and many more, who are dealing with the composites industry. Some of the features of this market report are:

- Global and regional analysis of rail market. The market size and growth rates of the rail market in Europe, North America and Asia with Rest of world.
- Global rail market trend (2008-2013) and forecast 2014-2019
- Composite materials consumption in the global rail market. Market break down by different types of resins and fibers.
- Market Parameters and Porter's Fiver Forces Model for OEM's and molders
- Composites consumption by region
- Composites consumption by manufacturing process
- Composites consumption by applications
- Growth trends (2008-2013) and forecast (2014-2019) for composites consumption in global rail market in terms of value and volume
- List of railcars using composites with material description
- Rail Composites molders with their product portfolio analysis & customer details

Contents:

1. Executive Summary
2. Global Rail Industry: Past, Present, and Future
 2.1. Past (200 Years of History in Brief)
 2.2. Present
 2.3. Future
3. Global Rail Market Analysis
 3.1. Market by Types of Railcars
 3.1.1. High-Speed Rail
 3.1.2. Heavy Rail (Metro/Rapid Transit)
 3.1.3. Light Rail (Urban Trams)
 3.1.4. Locomotives
 3.2. Market by Region
 3.2.1. Europe
 3.2.2. North America
 3.2.3. ROW
4. Trend and Forecast in Global Rail Market
 4.1. Trends in Rail
 4.2. Trends in Railcar
 4.2.1. Global Railcars Market Trend by Region
 4.3. Forecasts in Rail Market
 4.4. Forecasts in Railcars
 4.4.1. Global Rolling Stock Market Forecast by Region
 4.4.2. Order Backlogs
5. Global Rail Market: Industry Leaders
 5.1. Total Sales by Major OEMs
 5.2. Product Review of Major Global Rail OEMs
 5.2.1. Product Portfolio Analysis
 5.2.2. Bombardier Transportation
 5.2.3. Alstom Transportation
 5.2.4. CSR
 5.2.5. China CNR
6. Composite Materials and Their Applications in Rail Industry
 6.1. Lifecycle Cost Considerations in Choosing Materials
 6.2. Raw Materials Used by Component Manufacturers
 6.2.1. Reinforcement
 6.2.2. Resins
 6.2.3. Core Material
 6.2.4. Prepreg
 6.3. Raw Material Suppliers to the Rail Industry
6.3.1. Reinforcement Fiber/Fabric Suppliers
6.3.2. Resin Suppliers
6.3.3. Core Materials Suppliers
6.3.4. Prepreg Suppliers:
6.4. Overview of Composites Applications in Rail Market
6.5. Composite Applications in Trains
6.5.1. Alstom TGVs
6.5.2. Kawasaki Shinkansen
6.5.3. Amtrak Acela
6.5.4. Siemens Velaro
6.5.5. Magnetic Levitation
6.5.6. Alstom AGV
6.5.7. Bombardier Regina
6.5.8. Bombardier Talent
6.5.9. Bombardier Turbostar
6.5.10. Bombardier Innovia
6.5.11. Siemens Combino Tram
6.5.12. Austrian Bayerische Oberlandbahn
6.6. Core Material Applications in Trains
6.6.1. DIAB
6.6.2. Alcan Airex
6.7. Interior Applications
6.8. Exterior Applications
6.9. Composite Materials Requirements
6.9.1. Fire Standards
6.9.2. British Standard BS6853:1999
6.9.3. France Standard NF F 16-101/NF F 16-102
6.9.5. EU Standard EN 45545: 1988
6.9.6. The United States Standard NFPA 130:2000
6.9.7. Italy Standard PrE10.02.977.3
6.9.8. Property Comparison
6.9.9. Fire Performance of Phenolic
6.9.10. Categories of Trains as per BS6853
6.1. Composites Market Analysis in Rail
6.11. Composites Consumption by Material Type (Raw Material)
6.11.1. Resin Consumption by Type
6.11.2. Fiber Consumption by Type
6.12. Composites Consumption by Material Type (End Market)
6.12.1. Composites Consumption by Resin Type
6.12.2. Composites Consumption by Fiber Type
6.13. Composite Materials Consumption by Application (End Market)
6.14. Composites Consumption by Region
6.15. Composites Consumption by Manufacturing Process (End Market)
6.15.1. Hand Lay-up/Wet Lay-up Process
6.15.2. RTM Process
6.15.3. VARTM Process
6.15.4. SCRIMP Process
6.15.5. Prepreg Lay-up Process
6.15.6. Pultrusion
6.16. Composites Rail Tie Manufacturers
6.16.1. Recycle Technologies International (RTI)
6.16.2. Tie Tek
6.16.3. Axion International
6.16.4. Performance Rail Tie
6.16.5. IntegriCo Composites

7. Trend and Forecast of Composites in Rail Market
7.1. Driving Forces and Challenges
7.2. Overall Trends
7.2.1. Trends by Region (End Market)
7.2.2. Trends by Process (End Market)
7.2.3. Trends by Resin Type (End Market)
7.2.4. Trends by Fiber Type (End Market)
7.3. Overall Forecast
7.3.1. Forecast by Region (End Market)
7.3.2. Forecast by Manufacturing Process (End Market)
7.3.3. Forecast by Resin (End Market)
7.3.4. Forecast by Fiber (End Market)
7.4. Rail Composites Tie Market

8. Rail Composites Component Molders
8.1. Overview of Component Molders
8.2. Composites Component Suppliers
8.2.1. AAR Composites
8.2.2. Able Manufacturing & Assembly
8.2.3. Aim Composites Ltd..
8.2.4. ApATECh
8.2.5. Azdel
8.2.6. Beard & Cornall
8.2.7. Creative Pultrusion, Inc.
8.2.8. Dartford Composites Ltd..
8.2.9. Ebo System
8.2.10. Ernst Kuhne Kunststoffwerk GmbH & Co. KG
8.2.11. Exel Composites
8.2.12. Faiveley Transport
8.2.13. Fiberline A/S
8.2.14. Fibrocom
8.2.15. Horlacher
8.2.16. Hubner-Germany
8.2.17. Intermountain Design
8.2.18. Joptek
8.2.19. Jupiter Plast Composites
8.2.20. Kemrock
8.2.21. Magee Plastics Company
8.2.22. Martin Marietta Materials
8.2.23. McClarin Plastics
8.2.24. Miles Fiberglass & Composites
8.2.25. Rochling Group
8.2.26. Stillman Northern
8.2.27. Stratiforme
8.2.28. Stratime Composites Systems
8.2.29. Temoinsa
8.2.30. Testori Americas
8.2.31. Texstars Inc.
8.2.32. TPI Composites
8.2.33. Top Glass S.P.A.
8.2.34. Premier Composite Technologies (PCT)
8.2.35. Haysite Reinforced Plastics Co.

List of Figures

Chapter 1. Executive Summary
Figure 1.1: Porter’s five forces model for the global rail market
Figure 1.2: Porter’s five forces model for the composites market in global rail market (end market perspective)

Chapter 2. Global Rail Industry: Past, Present, and Future
Figure 2.1: Top speed gained by locomotives at different times
Figure 2.2: Passenger - kilometer in 2010
Figure 2.3: Length of rail lines - globally
Figure 2.4: Current records for top speeds by traction type
Figure 2.5: Price of single global railcars by category

Chapter 3. Global Rail Market by Type of Cars
Figure 3.1: Global rolling stock market by region in 2013 by percentage of total shipments
Figure 3.2: Siemens' Venturio
Figure 3.3: Alstom's TGV
Figure 3.4: Bombardier's metro at Delhi, India
Figure 3.5: Siemens' VAL
Figure 3.6: Alstom's Citadis tram
Figure 3.7: Siemens' Avanto
Figure 3.8: Alstom Prima Locomotive
Figure 3.9: Global rolling stock market by region in 2013

Chapter 4. Trend and Forecast in Global Rail Market
Figure 4.1: Trends in the global rail industry from 2008 to 2013
Figure 4.2: Global rolling stock market trend from 2008 to 2013
Figure 4.3: Global rolling stock market trend in unit shipment
Figure 4.4: Trend of global rolling stock market by region from 2008-2013 in $B shipment
Figure 4.5: Forecast in global railway industry from 2014 to 2019
Figure 4.6: Global rolling stock market forecast from 2014 to 2019
Figure 4.7: Global rolling stock market by region in 2019
Figure 4.8: Global rolling stock market forecast by region
Figure 4.9: Regional breakdown of Bombardier order backlog in 2013
Figure 4.10: Bombardier Global rail order backlog trends from 2008 to 2013 in B dollars
Figure 4.11: Alstom order backlog in 2013 by region
Figure 4.12: Alstom global rail order backlog trends from 2008-2013 in B dollars
Figure 4.13: Kawasaki order backlog in 2013 by region
Figure 4.14: Kawasaki global rail order backlog trends from 2008-2013 in B dollars

Chapter 5. Trends and Forecasts in Global Rail Market
Figure 5.1: Total sales of major OEMs in the global rail industry from 2008 to 2013
Figure 5.2: Bombardier people mover - Innovia
Figure 5.3: Bombardier monorail
Figure 5.4: Bombardier monorail Flexity
Figure 5.5: Bombardier Flexity tram 2
Figure 5.6: Bombardier metro – Movia train
Figure 5.7: Bombardier Intercity Train
Figure 5.8: Newly launched Bombardier Zefiro train
Figure 5.9: Bombardier TRAXX Locomotive
Figure 5.10: Alstom Citadis tram
Figure 5.11: Alstom Metropolis
Figure 5.12: Alstom X'Trapolis
Figure 5.13: Alstom Coradia
Figure 5.14: Alstom TGV
Figure 5.15: Alstom Pendolino
Figure 5.16: Alstom Prima El Loco
Figure 5.17: CSR Electric Locomotive
Figure 5.18: CSR Diesel Locomotive
Figure 5.19: CSR passenger coach
Figure 5.20: CSR air-conditioned passenger coach
Figure 5.21: CSR freight wagon
Figure 5.22: CSR subway train
Figure 5.23: CSR pioneer MU
Figure 5.24: CNR electric locomotive "Sky Shuttle"
Figure 5.25: CNR DF11D diesel locomotive
Figure 5.26: CNR passenger coach 2SZ Family
Figure 5.27: CNR freight wagon P65
Figure 5.28: CNR rapid transit vehicle DK32
Figure 5.29: CNR electrical MUs
Figure 5.30: CNR diesel MUs ("Putian" 160 km/h concentrated power diesel Tiltin)
Figure 5.31: CNR light rail

Chapter 6. Composite Materials and their Applications in Rail Industry
Figure 6.1: Front nose made of composites in Alstom TGV
Figure 6.2: Front nose made of composites in Alstom Kawasaki
Figure 6.3: Front nose made of composites in Amtrak Acela
Figure 6.4: Amtrak Acela using composites
Figure 6.5: Front nose made of composites in Siemens Velaro
Figure 6.6: Composites car body in Maglev
Figure 6.7: Bombardier Regina uses composites
Figure 6.8: KTK group interior components -DIAB- Shanghai Metro
Figure 6.9: Front exterior panel over the bumper guards -DIAB- Regio Shuttle Train
Figure 6.10: Alcan core material used on raw cabins
Figure 6.11: Roofs and intermediate floors for rail vehicles - Alcan core material
Figure 6.12: Toilet modules
Figure 6.13: Toilet seat
Figure 6.14: Interior lining at QEBB
Figure 6.15: Battery box cover at ICS Double-Decker
Figure 6.16: Cab-door-liner
Figure 6.17: Window mask for rail
Figure 6.18: Cab console shroud
Figure 6.19: Cab door
Figure 6.20: Luggage bin
Figure 6.21: Ceiling access panel
Figure 6.22: Sitzschalen Transpole Metro-seat shell
Figure 6.23: Composites BART floor
Figure 6.24: Oxygen-distributor-cover
Figure 6.25: Septa car window panel
Figure 6.26: Console knee panel
Figure 6.27: Toilet modules
Figure 6.28: Maglev
Figure 6.29: Maglev
Figure 6.30: GM locomotive nose - intermountain design
Figure 6.31: Skirts used at Stadler
Figure 6.32: Shinkansen bullet train in which front noses are made of composites
Figure 6.33: People Mover intermountain design
Figure 6.34: Alcan VAC raw cabins ready for assembly and paintwork
Figure 6.35: GE front cab
Figure 6.36: Alcan - FLIRT regional train's cabins
Figure 6.37: DV - 12 locomotives door
Figure 6.38: ICS Double-Decker's end cover
Figure 6.39: Composites consumption by material (raw market) in the global rail market 2013
Figure 6.40: Composites consumption by material (raw market) in the global rail market 2013
Figure 6.41: Composites consumption by resin (raw market) in the global rail market 2013
Figure 6.42: Composites consumption by resin (raw market) in the global rail market 2013
Figure 6.43: Composites consumption by fiber (raw market) in the global rail market 2013
Figure 6.44: Composites consumption by fiber (raw market) in the global rail market 2013
Figure 6.45: Composite materials consumption by type of resin by value in 2013 (end market)
Figure 6.46: Composites consumption by type of fiber by value in 2013 (end market)
Figure 6.47: Composite materials consumption by application in M dollars in 2013 (end market)
Figure 6.48: Composite materials consumption by application in M pounds in 2013 (end market)
Figure 6.49: Composites consumption by region by M dollars in 2013 (end market)
Figure 6.50: Composites consumption by region by M pounds in 2013 (end market)
Figure 6.51: SCRIMP process
Figure 6.52: Composite materials consumption by major manufacturing processing Techniques in M dollars in 2013 (end market)
Figure 6.53: Composite materials consumption by major manufacturing processing techniques in M pounds in 2013 (end market)
Figure 6.54: Composite materials consumption by manufacturing process technique by M dollars in 2013 (end market)
Figure 6.55: Composite materials consumption by weight by manufacturing process technique in 2013 (end market)
Figure 6.56: China transit authority composites cross ties
Figure 6.57: Some rail tie manufacturers and their rail tie products
Figure 6.58: Rail tie–RTI

Chapter 7. Trend and Forecast of Composites in Rail Market
Figure 7.1: Drivers and challenges for composites in rail
Figure 7.2: Composites consumption trends in global railcars in $m from 2008-2013 in terms of end market
Figure 7.3: Composite materials consumption trends in the global rail market from 2008 to 2013
Figure 7.4: Composites consumption by region (end market) ($M) in the global rail market 2008
Figure 7.5: Composites consumption by region (end market) ($M) in the global rail market 2012
Figure 7.6: Composites consumption by region (end market) ($M) in the global rail market 2013
Figure 7.7: Composites consumption by region (end market) (M pounds) in the global rail market 2008
Figure 7.8: Composites consumption by region (end market) (M pounds) in the global rail market 2012
Figure 7.9: Composites consumption by region (end market) (N pounds) in the global rail market 2013
Figure 7.10: Composites consumption by manufacturing process (end market) in the global rail market 2008
Figure 7.11: Composites consumption by manufacturing process (end market) in the global rail market 2012
Figure 7.12: Composites consumption by manufacturing process (end market) in the global rail market 2013
Figure 7.13: Composites consumption by manufacturing process (end market) in the global rail market 2008
Figure 7.14: Composites consumption by manufacturing process (end market) in the global rail market 2012
Figure 7.15: Composites consumption by manufacturing process (end market) in the global rail market 2013
Figure 7.16: Composites consumption by resin (end market) ($M) in the global rail market 2008
Figure 7.17: Composites consumption by resin (end market) ($M) in the global rail market 2012
Figure 7.18: Composites consumption by resin (end market) ($M) in the global rail market 2013
Figure 7.19: Composites consumption by fiber (end market) ($M) in the global rail market 2008
Figure 7.20: Composites consumption by fiber (end market) ($M) in the global rail market 2012
Figure 7.21: Composites consumption by fiber (end market) ($M) in the global rail market 2013
Figure 7.22: Composites consumption forecast in the global railcar market by $M from 2014 to 2019 in terms of end market
Figure 7.23: Composites material consumption forecast in the global railcar market by M pounds from 2014 to 2019
Figure 7.24: Composites consumption by region (end market) ($M) in the global rail market 2014
Figure 7.25: Composites consumption by region (end market) ($M) in the global rail market 2019
Figure 7.26: Composites consumption by region (end market) (M pounds) in the global rail market 2014
Figure 7.27: Composites consumption by region (end market) M pounds) in the global rail market 2019
Figure 7.28: Composites consumption by manufacturing process (end market) in the global rail market 2014
Figure 7.29: Composites consumption by manufacturing process (end market) in the global rail market 2019
Figure 7.30: Composites consumption by manufacturing process (end market) in the global rail market 2014
Figure 7.31: Composites consumption by manufacturing process (end market) in the global rail market 2019
Figure 7.32: Composites consumption by resin (end market) ($M) in the global rail market 2014
Figure 7.33: Composites consumption by resin (end market) ($M) in the global rail market 2019
Figure 7.34: Composites consumption by fiber (end market) ($M) in the global rail market 2014
Figure 7.35: Composites consumption by fiber (end market) ($M) in the global rail market 2019

List of Tables

Chapter 1. Executive Summary
Table 1.1: Market parameters for the global railcar market and attributes of usage
Table 1.2: Market parameters for the end product usage of composites in global rail market and attributes of usage

Chapter 2. Global Rail Industry: Past, Present, and Future
Table 2.1: Passenger traffic trends around the world (in billions passenger-kilometers)
Table 2.2: Length of lines around the world (in kilometers)
Table 2.3: Country using different rail gauges
Table 2.4: Top OEMs segmentation by train type
Table 2.5: GDP, industrial production, and unemployment rate for leading countries
Table 2.6: Interest and exchange rates for leading countries interest rate (%) p.a. (January 15, 2014)
Table 2.7: Emerging market indicators (economy and financial market)

Chapter 3. Global Rail Market by Type of Cars
Table 3.1: List of counties with their total high-speed rail network in 2013

Chapter 4. Trend and Forecast in Global Rail Market
Table 4.1: Growth of global rail vehicle sales in billion dollars
Table 4.2: Growth of global rail vehicle sales in units
Table 4.3: Top global railcar manufacturers order backlog trends from 2008 to 2013

Chapter 5. Trends and Forecasts in Global Rail Market
Table 5.1: Product portfolio analysis for global rail manufacturers

Chapter 6. Composite Materials and their Applications in Rail Industry
Table 6.1: List of materials found in global rail vehicle applications
Table 6.2: List of rail composites product manufacturer with matrix and reinforcements
Table 6.3: Properties of fibers and conventional bulk materials
Table 6.4: Reinforcement suppliers
Table 6.5: Owens corning rail composites applications
Table 6.6: PPG's rail composites applications
Table 6.7: Ahlstrom's rail composites applications
Table 6.8: Johns Manville rail composites applications
Table 6.9: Parabeam's rail composites applications
Table 6.10: Hankuk's rail composites applications
Table 6.11: List of resin and additive suppliers
Table 6.12: Core material suppliers
Table 6.13: Applications in train by fiber and resin
Table 6.14: Core material manufacturer supplies to passenger rail industry
Table 6.15: List of rail composites interiors
Table 6.16: List of rail composites exteriors
Table 6.17: BS6853:1999 the main fire test standards
Table 6.18: France standard NF F 16-101:1988 the main fire test standard
Table 6.19: German standard DIN 5510-2:1988 the main fire test standard
Table 6.20: EN 45545:1988 the main fire testing standard
Table 6.21: NFPA 130:2000 the main fire testing standard
Table 6.22: Comparison of the performance of phenolic, polyester, and metals
Table 6.23: Fire performance of phenolic resin
Table 6.24: Comparison of different composites
Table 6.25: Toxicity of different gases
Table 6.26: Show the different parameters as per bs 6853 standard
Table 6.27: TRAXX locomotive's material distribution
Table 6.28: Processes used and parts produced by select manufactures of composites

Chapter 8. Rail Composites Component Molders
Table 8.1: Molders by resin material employed
Table 8.2: Molders by manufacturing processes employed
Table 8.3: AAR composites rail
Table 8.4: Able manufacturing & assembly rail composites information
Table 8.5: Aim Composites Ltd. rail composites information
Table 8.6: ApATECh rail composites information
Table 8.7: Azdel, Inc. rail composites information
Table 8.8: Beard & Cornall rail composites information
Table 8.9: Creative Composites Ltd rail composites information
Table 8.10: Dartford Composites Ltd. rail composites information
Table 8.11: Ebo Systems rail composites information
Table 8.12: Ernst Kühne Kunststoffwerk rail composites information
Table 8.13: Exel Composites rail composites information
Table 8.14: Faiveley Transport rail composites information
Table 8.15: Fiberline rail composites information
Table 8.16: Fibrocom rail composites information
Table 8.17: Hoklarcher rail composites information
Table 8.18: Hubner-Germany rail composites information
Table 8.19: Intermountain Design rail composites information
Table 8.20: Joptek Rail composites information
Table 8.21: Jupiter Plast rail composites information
Table 8.22: Kemrock Rail composites information
Table 8.23: Magee Plastics Company rail composites information
Table 8.24: Martin Marietta Materials rail composites information
Table 8.25: McClarin Plastic rail composites information
Table 8.26: Miles Fiberglass rail composites information
Table 8.27: Rochling Group rail composites information
Table 8.28: Stillman Northern rail composites information
Table 8.29: Stratiforme Rail composites information
Table 8.30: Stratime Composites Systems rail composites information
Table 8.31: Temoinsa rail composites information
Table 8.32: Testori Americas rail composites information
Table 8.33: Texstars rail composites information
Table 8.34: TPI Composites rail composites information
Table 8.35: Top glass rail composites information
Table 8.36: PCT composites information
Table 8.37: Haysite composites information

Ordering:

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Opportunities for Composites in the Global Railway Market 2014-2019
Web Address: http://www.researchandmarkets.com/reports/3783361/
Office Code: SCPLEYLF

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td>□</td>
<td>USD 4400</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 5 Users</td>
<td>□</td>
<td>USD 7700</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td>□</td>
<td>USD 11000</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number: 833 130 83
Sort code: 98-53-30
Swift code: ULSBIE2D
IBAN number: IE78ULSB9853083313083
Bank Address: Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World