Report package: T-Cell Immunotherapy by Bispecific Antibodies and CAR & TCR Engineered T-cells

Description: "Report package: T-Cell Immunotherapy by Bispecific Antibodies and CAR & TCR Engineered T-cells"

Immunotherapy of cancer with direct or indirect use of T-cells is one of the most exciting fields of cancer research. Direct T-cell therapy implies the ex vivo engineering of autologous or allogeneic T-cells for tumor targeting by chimeric antigen receptors (CAR) or T-cell receptors (TCR).

Indirect T-cell therapy leverages the capability of tumor-targeted bispecific antibodies to redirect T-cells to the tumor. This report package includes two full reports covering both aspects of T-cell immunotherapy of cancer.

The original reports (Linked below) were published in May and August 2016, respectively:

"T-Cell Redirecting Bispecific Antibodies 2016: A Competitive Landscape Analysis of Stakeholders, Technologies, Pipelines and Deals"

Immunotherapy of cancer with direct or indirect use of T-cells is one of the most exciting fields of cancer research. Direct T-cell therapy implies the ex vivo engineering of autologous or allogeneic T-cells for tumor targeting by chimeric antigen receptors (CAR) or T-cell receptors (TCR).

Despite stunning clinical results with CD19-targeted CAR T-cells, many major pharmaceutical companies have not embarked on this field of adoptive cell therapy, probably because cell products are a world completely different from that of small molecules or recombinant proteins and antibodies.

Tremendous progress in bispecific antibody technologies during the last decade and the clinical success of a first generation bispecific T-cell engager (BiTE) antibody molecule directed against CD19 lead to an explosion of T-cell redirecting bispecific antibodies in clinical development. Within 18 months, the number of clinical stage T-cell or natural killer (NK) cells redirecting bispecific antibodies has increased from 4 to 21 and further 16 molecules could enter clinical development within the next 12 months.

This report "T-Cell Redirecting Bispecific Antibodies 2016: A Competitive Landscape Analysis of Stakeholders, Technologies, Pipelines and Deals" as of May 2016 brings you up-to-date information about and analysis of 34 corporate players, 22 key technologies, 47 T-cell and NK-cell redirecting bispecific antibody profiles, business deals and private and public financing rounds.

The report analyzes the pipeline of T-cell and NK-cell redirecting bispecific antibody molecules regarding preferred targets, molecular constructs, dosing schedules, clinical experience, combination study plans, competition with other treatment modalities and the next wave of T-cell and NK-cell redirecting antibodies.

Preferences in bispecific antibody technologies are evaluated regarding drug candidate output, partnering, technological features and impact on clinical administration regimens.

The report highlights the commercial value of T-cell redirecting bispecific antibody immunotherapeutics in terms of drug prices, sales, company acquisition prices, economic terms of partnering deals, and private or public financing rounds.

All information in the report is fully referenced with 159 scientific references, in many cases with hyperlinks leading to the source of information (abstracts, Posters, papers). Non-scientific references, such as press releases, annual reports or company presentations are disclosed within the text with an embedded hyperlink leading to the online source of information.

What will you find in the report?
- Profiles of 34 companies active in the field;
- Comprehensive description of 23 established and emerging T-cell or NK-cell redirecting antibodies
Profiles of two approved and 45 T-cell or NK-cell redirecting bispecific antibodies in all phases of development;
- Technology selection and preferences of major pharma;
- Key characteristics of technologies with clinical stage drug candidates
- Emerging alternative bi- and trispecific formats
- Target selection and competition in drug candidates
- Competition of recombinant bispecific molecules with alternative treatment modalities
- Dosing schedules of clinical stage drug candidates based on molecular features
- Economic terms of collaboration and licensing deals;

Who will benefit from the report?
- Venture capital, private equity and investment managers;
- Financial analysts;
- CFO;
- Business development and licensing (BDL) specialists;
- Marketing managers;
- CEO, COO and managing directors;
- Corporate strategy, product and portfolio analysts and managers;
- Chief Technology Officer;
- Cell technology and manufacturing specialists;
- Clinical and preclinical development specialists

"TCR & CAR Engineered T-Cell and NK Cell Therapeutics 2016"

The report, "TCR & CAR Engineered T-Cell and NK Cell Therapeutics 2016: Convergence of technologies opens business opportunities beyond CD19 CARTs" describes and analyzes the status of the adoptive cell therapy industry as of August 2016.

The report covers autologous and allogeneic engineered chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapy candidates as well as natural killer (NK) cell and CAR engineered NK cells in research and development by biopharmaceutical companies. Cytotoxic lymphocytes (CTLs), donor lymphocyte infusions (TLIs) and tumor infiltrating lymphocytes (TILs) complement the spectrum of the report.

The report highlights and discusses
- Company financing;
- Business development & financing;
- Improvements of CAR T-cell therapy incl. gene editing and universal CARTs;
- Engineered TCR T-cells, including TCR target discovery;
- The current status of DLIs, CTLs and TILs;
- Manufacturing of T-cells for adoptive cell therapy;
- NK cells and CAR engineered NK cells;
- International perspective on TCR & CAR T-cell and NK cell therapy; and
- Key success factors & convergence of technologies.

The early and impressive clinical results of anti-CD19 CAR T-cell therapy most probably will see confirmation in ongoing pivotal studies in acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) leading to approval as early as 2017.

Supported by Big Pharma money and billions of US$ by private financing rounds, public offerings and partnering money, Novartis, Juno Therapeutics and Kite Pharma are in a close race to be first on market with autologous CD19 CAR T-cell products. Cash-rich Juno and Kite went on a shopping and licensing tour to add numerous technologies like pearls on a string to be prepared for next generation development candidates.

However, clinical experience with CD19 CAR T-cells and other CAR T-cells for hematologic and solid tumors has revealed quite a number of hurdles.

Part of them have to be addressed by protocol issues, such as the pre-conditioning chemotherapy problem, or clinical combination studies with checkpoint inhibitors to modulate the tumor micro-environment. But technological solutions are far more required to improve safety and efficacy as well as convenience and manufacturing of CAR T-cell therapies. Another big issue is the lack of strictly tumor-specific targets.
Among the key technologies are gene editing and TCR target discovery. Companies with such capabilities will have a strong position in financing, partnering and corporate development. This report describes the key players in the field and companies with complementary technologies ideal for joint ventures, or better, mergers.

The analytical evaluation in this report is based on retrieval of information about and detailed description of the profiles of 67 companies and 67 cell therapy product candidates. Information was obtained from 193 scientific references (abstracts, full papers, reviews), press releases, financial information, annual reports, presentations and webcasts. All information sources are fully referenced, either as scientific references or by hyperlinks embedded on the source description for online access to the source.

Who will benefit from this report?

- Technology Officers
- Corporate Development
- Strategic Planning
- Business Development & Licensing
- Corporate Finance
- Portfolio Management
- Investors & Analysts
- Clinical Development
- Research & Development

Contents:

T-Cell Redirecting Bispecific Antibodies 2016: A Competitive Landscape Analysis of Stakeholders, Technologies, Pipelines and Deals

1. Introduction

2. Executive Summary

3. Competitive Landscape Analysis
 3.1 Stakeholders
 3.1.1 Major biopharmaceutical companies
 3.2.2 Small & medium pharmaceutical & biotechnology companies
 3.2 Technologies
 3.3 Pipeline
 3.3.1 Overview
 3.3.2 Targets
 3.3.3 Competition with other Treatment Modalities
 3.3.4 Administration Regimens of T-cell Redirecting Bispecific Antibodies
 3.3.5 Next Wave of T-cell and NK-Cell Redirecting Antibodies
 3.3.6 Clinical Experience with T-cell and NK-cell redirecting Bispecific Antibodies
 3.4 Commercial value of targets, drugs & technologies
 3.4.1 Drug prices and sales
 3.4.2 Economic terms of collaboration and licensing agreements
 3.4.3 Acquisition price (cost) of companies
 3.4.4 Public and private financing rounds

4. Company Profiles
 4.1 Major Pharma & Biotech
 4.1.1 Amgen
 4.1.2 AstraZeneca
 4.1.3 Bayer
 4.1.4 Boehringer Ingelheim
 4.1.5 Eli Lilly
 4.1.6 GlaxoSmithKline
 4.1.7 Janssen Biotech
 4.1.8 Pfizer
 4.1.9 Roche
 4.1.10 Servier
 4.2 Small & Medium Pharma & Biotech
 4.2.1 Adimab
4.2.2 Affimed Therapeutics
4.2.3 Alligator Biosciences
4.2.4 Ambrx
4.2.5 CytomX
4.2.6 Emergent BioSolutions
4.2.7 EngMab
4.2.8 Eureka Therapeutics
4.2.9 GEMoaB
4.2.10 Generon
4.2.11 Genmab
4.2.12 Glenmark Pharmaceuticals
4.2.13 Immunocore
4.2.14 MacroGenics
4.2.15 Merus
4.2.16 Molecular Partners
4.2.17 Morphosys
4.2.18 Neovii Biotech
4.2.19 OMT Therapeutics
4.2.20 Pieris
4.2.21 Regeneron Pharmaceuticals
4.2.22 Wuhan YZY Biopharma
4.2.23 Xencor
4.2.24 Zymeworks

5. Technology Profiles
5.1 ADAPTIR
5.2 ART-Ig
5.3 Azymetric Scaffold
5.4 BEAT
5.5 Biclonics
5.6 BiTE
5.7 CrossMab
5.8 DART
5.9 Fc-DART
5.10 Dock-and-Lock (DNL)
5.11 DuoBody
5.12 FynomAbs
5.13 ImmTAC
5.14 Knobs-into-Holes
5.15 mAbXcite
5.16 Modified VelocImmune
5.17 TandAb
5.18 T-Cell Engaging Bi-specific (TCB) Probody
5.19 Triomab
5.20 UniDab
5.21 UniTARG/UniMAB
5.22 XmAb Bispecific
5.23 Y-Body Bispecific

6. Drug & Drug Candidate Profiles
6.1 A-337
6.2 AFM11
6.3 AFM13
6.4 AFM21
6.5 AFM22
6.6 AFM24
6.7 AMG 221
6.8 AMG 330
6.9 AMV-564
6.10 BI 836909
6.11 Bispecific anti-CD3-folate
6.12 Blincyto
6.13 CD79b-TDB
TCR & CAR Engineered T-Cell and NK Cell Therapeutics 2016

1 Executive Summary

2 Introduction

3 Company Financing
3.1 Stock Market
3.2 Partnering Deals
3.3 Early Stage Financing (VC, PE & Other Seed Money)
3.4 Summary & Conclusions

4 Business Development & Licensing
4.1 „Public-Private Partnerships“ between Academia and Industry
4.2 Corporate Alliances & Out-Licensing to Major Pharma & Biotech
4.3 In-Licensing from Pharma & Biotech
4.4 Collaborations & Joint Ventures
4.5 Corporate & Asset Acquisitions

5 Improvement of Chimeric Antigen Receptor (CAR) T-Cell Therapy

5.1 Improvement of Safety
5.1.1 Role of pre-conditioning regimen
5.1.2 Suicide genes as safety switch
5.1.3 Elimination genes as safety switches
5.1.4 Activation genes as safety switches
5.1.5 Safety knock-out
5.1.6 Tumor-specific activation
5.1.7 Prodrug approach
5.1.8 Safer T-cell signaling & activation
5.1.9 Transient CAR expression
5.1.10 Target selectivity & intratumoral delivery

5.2 Gene Editing

5.3 Improvement of Efficacy
5.3.1 T-cell subsets
5.3.2 Genetic modification of T-cells
5.3.3 T-Cell activation & expansion
5.3.4 CAR design: antigen-binding domain
5.3.5 CAR design: linker/spacer and transmembrane domain
5.3.6 CAR design: intracellular signaling domains
5.3.7 CAR design: armored CARs against tumor microenvironment
5.3.8 Immune checkpoint inhibition
5.3.9 T-cell auto-antigen knock-out
5.3.10 Target heterogeneity & target loss

5.4 Universal CAR T-Cells

5.5 Allogeneic CAR T-cells

6 Competitive CAR T-Cell Pipeline Analysis
6.1 CD19 CAR T-Cells
6.2 CD19 CART Pivotal Studies
6.3 CD19 CART Developments by Chinese Companies
6.4 Further CAR T-Cells against Hematologic Malignancies
6.5 CAR T-Cells against Solid Tumors
6.6 CAR T-Cell Developments in China
6.7 Access to CAR Targets & CAR Target Discovery

7 Engineered TCR T-Cells

7.1 TCR T-Cell Pipeline

7.2 TCR Target Discovery
7.2.1 SPEAR T-Cell Technology
7.2.2 Naturally Selected TCRs (BioNTech)
7.2.3 XPRESIDENT
7.2.4 TCR-GENErator
7.2.5 Single-Cell Sequencing (Juno)
7.2.6 Natural, High Affinity TCRs (Bellicum)
7.2.7 Sleeping Beauty Electroporation of TCRs
7.2.8 Combinatorial T Cell Receptor Exchange (CTE)
7.2.9 Tumor-Specific TCR Library (Medigene)
7.2.10 Phagemers (Nextera)
7.2.11 ALPHA Phage Display (Eureka)
7.2.12 Epitarget (AIT)

8 Donor Lymphocyte Infusions (DLI)

9 Cytotoxic T-Lymphocytes (CTL)

10 Tumor Infiltrating Lymphocytes (TIL)

11 Manufacturing of T-Cells for Adoptive Cell Therapy
11.1 In-House Manufacturing
11.2 Manufacturing Time

12 Natural Killer (NK) Cells

13 International Perspective on TCR & CAR T-Cell Therapy

14 Key Success Factors & Convergence of Technologies

15 Company Profiles

15.1 Major pharma & biotech companies
15.1.1 Amgen
15.1.2 Celgene
15.1.3 Eli Lilly
15.1.4 GlaxoSmithKline
15.1.5 Janssen
15.1.6 Merck KGaA
15.1.6 Novartis
15.1.7 ONO Pharmaceutical Co
15.1.8 Pfizer
15.1.9 Servier
15.1.10 Shire (Baxalta)

15.2 USA & Canada: technology and development companies
15.2.1 Atara Biotherapeutics
15.2.2 Aurora Biopharma
15.2.3 Bellicum Pharmaceuticals
15.2.4 Bluebird bio
15.2.5 CytoMx Therapeutics
15.2.6 Eureka Therapeutics
15.2.7 Formula Pharmaceuticals
15.2.8 iCell Gene Therapeutics
15.2.9 Intrexon
15.2.10 Juno Therapeutics
15.2.11 Kite Pharma
15.2.12 Lion Biotechnologies
15.2.13 MaxCyte
15.2.14 Mustang Bio
15.2.15 Nantkwest
15.2.16 Poseida Therapeutics
15.2.17 Precision BioSciences
15.2.18 Sorrento Therapeutics
15.2.19 TNK Therapeutics
15.2.20 Triumvira Immunologics
15.2.21 Unum Therapeutics
15.2.22 Vor Biopharma
15.2.23 ZIOPHARM Oncology

15.3 Europe: technology & development companies
 United Kingdom:
 15.3.1 Adaptimmune Therapeutics
 15.3.2 Autolus
 15.3.3 Catapult Therapy TCR
 15.3.4 Cell Medica
 15.3.5 Chimeric Therapeutics
 15.3.6 Leucid Bio
 15.3.7 Oxford BioMedica
 15.3.8 The Cell & Gene Therapy Catapult

 France, Belgium & Italy
 15.3.9 Cellectis
 15.3.10 Celyad
 15.3.11 MolMed
 15.3.12 Theravectys

 Germany
 15.3.13 BioNTech
 15.3.14 CPT - Cellex Patient Treatment & GEMoA Monoclonals
 15.3.15 Immatics
 15.3.16 Medigene
 15.3.17 Miltenyi Biotec

 The Netherlands, Norway & Finland
 15.3.18 Gadeta
 15.3.19 Nextera
 15.3.20 TILT Biotherapeutics

15.4 Asia

 Japan & Korea
 15.4.1 Green Cross Lab Cell
 15.4.2 Takara Bio

 China
 15.4.3 American Yuva Biomed
 15.4.4 Beijing Doing Biomedical
 15.4.5 CARsgen Therapeutics
 15.4.6 Cellular Biomedicine Group
 15.4.7 Immune Therapeutics
 15.4.8 Innovative Cellular Therapeutics
 15.4.9 JW Biotechnology
 15.4.10 PersonGen BioTherapeutics
 15.4.11 Shanghai GeneChem
 15.4.12 Shenyang Sunshine Pharmaceutical
 15.4.13 Sinobioway Cell Therapy

16 Cell Therapy Profiles
16.1 CD19-targeted CAR T-cell therapeutics:
 16.1.1 4SCAR19
 16.1.2 BPX-401
 16.1.3 CBM-CD19.1
 16.1.4 CD19 CAR T-Cells (1st generation ZIOPHARM)
 16.1.5 CD19 CAR T-Cells (2nd generation ZIOPHARM)
 16.1.6 CTL019
 16.1.7 CTL119
 16.1.8 Fully human anti-CD19 CAR T (NCI & Kite)
 16.1.9 JCAR014
 16.1.10 JCAR015
 16.1.11 JCAR017
 16.1.12 KTE-C19
 16.1.13 UCART19

16.2 CD123-targeted CAR T-cell therapeutics:
 16.2.1 CART123
 16.2.2 MB-102
 16.2.3 UCART123

16.3 BCMA-targeted CAR T-cell therapeutics:
 16.3.1 bb2121
 16.3.2 CART-BCMA

16.4 Fc-targeted CAR T-cell therapeutics:
 16.4.1 ACTR087
 16.4.2 ATTCK20

16.5 IL-13Ra2-targeted CAR T-cell therapeutics:
 16.5.1 Anti-IL-13Ra IgCD28TCR
 16.5.2 MB-101

16.6 Other solid tumor-targeted CAR T-cell therapeutics:
 16.6.1 Anti-CEA IgCD28TCR
 16.6.2 Anti-c-Kit IgCD28TCR
 16.6.3 Anti-GD3 IgCD28TCR
 16.6.4 Anti-PSMA IgCD28TCR
 16.6.5 AU105
 16.6.6 BPX-601
 16.6.7 CART-EGFRVIII
 16.6.8 CBM-EGFR.1
 16.6.9 CSG-GPC3
 16.6.10 JCAR020
 16.6.11 JCAR023
 16.6.12 JCAR024
 16.6.13 OXB-302

16.7 Other hematologic malignancy-targeted CAR T-cell therapeutics:
 16.7.1 CAR-CD44v6
 16.7.2 CBM-CDS20.1
 16.7.3 CBM-CDS30.1
 16.7.4 CD33 CAR
 16.7.5 JCAR018
 16.7.6 NKR-2
 16.7.7 UCART38
 16.7.8 UCARTCS1

16.8 MAGE (A3 / A4 / A10)-targeted TCR T-cell therapeutics:
 16.8.1 MAGE A3 TCR (NCI & Kite)
 16.8.2 MAGE A10c796 TCR
 16.8.3 TB-1201

16.9 Alpha-Fetoprotein-targeted TCR & TCR-like T-cell therapeutics
16.9.1 AFP-TCR
16.9.2 ET1402L1

16.10 NY-ESO-1-targeted TCR T-cell therapeutics
16.10.1 NY-ESOc259; GSK9377794
16.10.2 TB-1301

16.11 WT1-targeted TCR T-cell therapeutics
16.11.1 Autologous WT1 TCR
16.11.2 JTCR016

16.12 TCR T-cell therapeutics against other targets
16.12.1 BPX-701
16.12.2 TEG

16.13 Cytotoxic T Lymphocyte (CTL) therapeutics
16.13.1 CMD-003; baltaleucel-T
16.13.2 CMV-CTL
16.13.3 Cytovir
16.13.4 EBV-CTL
16.13.5 WT1-CTL

16.14 Donor Lymphocyte Infusion (DLI) therapeutics
16.14.1 BPX-501
16.14.2 Zalmoxis

16.15 Tumor Infiltrating Lymphocyte (TIL) therapeutics
16.15.1 LN-144
16.15.2 LN-145

16.16 Natural Killer (NK) cell therapeutics
16.16.1 aNK; Neukoplast; NK-92
16.16.2 haNK; CD16-Neukoplast
16.16.3 Her2.taNK
16.16.4 MG4101

17 References

List of Tables

Table 1 Company Financing by Public Offerings
Table 2 Company Financing by Partnering Deals
Table 3 Company Financing by Venture Capital, Private Equity & Other Seed Money
Table 4 Investors in Early Stage T-Cell & NK Cell Technology Companies
Table 5 Total Amount of Money Globally Raised in 2015/16
Table 6 Total Amount of Money Raised in 2015/16 in Europe ONLY
Table 7 North America: Partnering with & In-Licensing from Academia
Table 8 Europe: Partnering with & In-Licensing from Academia
Table 9 Asia: Partnering with & In-Licensing from Academia
Table 10 Corporate Alliances & Out-Licensing to Major Pharma & Biotech
Table 11 In-Licensing from Pharma & Biotech
Table 12 Collaborations & Joint Ventures
Table 13 Corporate & Asset Acquisitions
Table 14 Gene Editing Technologies for Engineering of T-Cells
Table 15 Overview of Corporate Allogeneic CAR T-cell Developments
Table 16 Molecular & Cellular Characteristics of anti-CD19 CAR T-Cell Therapies under Corporate Development outside of China
Table 17 Competing anti-CD19 CARTs in Pivotal Studies
Table 18 Molecular & Cellular Characteristics of anti-CD19 CAR T-Cell Therapies under Corporate Development outside of China
Table 19 Molecular & Cellular Characteristics of Further CAR T-Cell Therapies against Hematologic Malignancies under Corporate Development outside of China
Table 20 Molecular & Cellular Characteristics of CAR T-Cell Therapies against Solid Tumors under Corporate
Development outside of China
Table 21 Molecular & Cellular Characteristics of Further CAR T-Cell Therapies against Hematologic Malignancies under Corporate Development in China
Table 22 Molecular & Cellular Characteristics of CAR T-Cell Therapies against Solid Tumors under Corporate Development in China
Table 23 Pipeline of TCR T-Cell Therapy Candidates in Development with Company Participation
Table 24 Technologies for TCR Target Discovery and TCR T-Cell Generation
Table 25 Contract Manufacturing Organizations for T-cells
Table 26 Manufacturing Time of Selected TCR & CAR T-Cells and CTLs
Table 27 Bellicum's Switch and Costimulation Technologies
Table 28 Composition of Bellicum's T-Cell Product Candidates
Table 29 Bellicum's Pipeline of T-Cell Product Candidates
Table 30 Overview of Kite Pharma's Access to Technologies
Table 31 Overview of the Characteristics of Juno's CD19-Targeted CAR T-Cell Product Candidates
Table 32 Juno's Development Program of CD19 CAR-Ts
Table 33 Overview of the Characteristics of Juno's Further TCR & CAR T-Cell Product Candidates
Table 34 Juno's Clinical Development Program of Further TCR & CAR T-Cell Product Candidates
Table 35 Overview of Kite Pharma's Access to Technologies
Table 36 NCI-Initiated Clinical Studies of CAR & TCR T-Cell Product Candidates
Table 37 Overview of ZIOPHARM's R&D Pipeline
Table 38 Molecular & Cellular Characteristics of Cellectis' Allogeneic CAR T-Cells
Table 39 Early Clinical Trials with Autologous CAR T Cells from CBMG
Table 40 Early Clinical Trials of Sinobioway's CAR T-Cells
Table 41 Clinical Trials with CTL019
Table 42 Clinical Development Program of KTE-C19 CAR
Table 43 Early Clinical Trials with Adaptimmune's NY-ESOc259T

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3832439/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Report package: T-Cell Immunotherapy by Bispecific Antibodies and CAR & TCR Engineered T-cells
Web Address: http://www.researchandmarkets.com/reports/3832439/
Office Code: SC2GWL1X

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User:</td>
<td>USD 3360</td>
</tr>
<tr>
<td>Electronic (PDF) - Site License:</td>
<td>USD 6720</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide:</td>
<td>USD 10080</td>
</tr>
</tbody>
</table>

USD 5015 - Until 31st Mar 2017
USD 10030 - Until 31st Mar 2017
USD 15045 - Until 31st Mar 2017

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World