
Description: Comprehensive quantitative data and qualitative analysis about the towers, poles and street lighting markets, with market commentary and competitive analysis.

- Base year 2015 and forecasts of the installed base and demand from 2016 to 2020.
- Global analysis, the world, regions and for 124 countries.

The 4th edition has three major new features for this $36 billion market:

- The March of the Monopoles - long established in the US, EHV monopoles are breaking into new markets with innovative new designs, replacing lattice towers.
- Street lighting is included for the first time, a vigorous market driven by the conversion to high efficiency LEDs, a growing market for steel, concrete and composite poles.
- The composite poles industry, market development and production technology are analysed, with profiles of the main producers.

TRANSMISSION LATTICE TOWERS AND MONOPOLES

1. Lattice Transmission Towers and Monopoles
 - Installed base in units - Steel, concrete, wood
 - Annual sales in units
 - Annual sales in $ value

2. Long term demand cycle
 The long term demand cycle charted for new additions and replacements over the long term since 1900.

3. Monopoles and Lattice Towers
 Long established in the United States for EHV lines, monopoles are used in China and are now breaking into the conservative markets of Europe with interesting new designs. This trend is driven by pressure on rights-of-way, visual criticism of lattice towers and public fears of EMF dangers to children.

4. Tower and Monopole vendors, production capacity and market shares
 The top 34 manufacturers are listed with shares of production and the leaders profiled.

5. Evolution of the Transmission Networks
 Length and voltage time series.

6. Types of Lattice Tower
 Lattice towers are designed for different functions and stresses and there is wide variation in cost.
 - Suspension towers
 - Tension towers
 - Angle suspension towers
 - Dead end towers

7. Service life and maintenance of Towers and Monopoles
 Maintenance practices have a critical impact on the service life of towers, especially in harsh climate conditions.

8. The value chain - from materials to capex
 The value chain is a continuous process of adding cost to a product and depending where you position it the value changes, the end user’s capex being some five times the cost of original materials. The value chain is analysed with different mark-ups for each of six stages.

UTILITY POLES - WOOD, CONCRETE, STEEL, COMPOSITE

9. Utility Poles - Electricity, Telegraph, Street Lights
 - Installed base in units - steel, concrete, wood, composite
10. Utility Poles service life and replacement
Demand depends on new build and replacement. In 1950, 4.3% of demand for utility poles was for replacement, in 2015 that has risen to 62%. Poles have widely varying service lives depending on material and conditions. The service lives have been established by region and in some cases for individual countries.

11. Joint use of Utility Poles
Joint use by different utilities is a significant factor in the pole market. The protocols for space allocation and standards are outlined.

12. National market commentary for Utility Poles
Market commentary on installed bases and demand for utility poles in 24 countries, with information on numbers and type of pole.

13. Types and materials for of Utility Poles and applications
There are many types of pole in use. Different types and applications are outlined.

14. Composite Poles and materials
Composites are analysed in a 23 page section discussing this technology, applications, advantages and disadvantages, market status and manufacturers.

15. Circuits, phases and conductors
Most distribution networks employ single circuits, whereas transmission networks range from single to multiple circuits. This is an important consideration in specifying the type and dimensions of towers and poles.

16. ROW - Rights of Way
Rights of Way (ROW) is a significant cost and can be a serious obstacle in designing networks and specifying equipment. It is a significant factor in the trend to Monopoles.

17. Utility Pole and Street Light vendors
- Companies manufacturing concrete and steel poles are listed with brief details.
- Companies harvesting and preparing wood poles are listed with brief details.

18. Dangers & mitigation of damage to Poles by birds.
Birds constitute a significant threat to poles and energised lines. Accidents not only harm the birds but causes power outages. The problems and mitigations are discussed.

Contents:
- Executive Summary
- Definitions And Terms for Supports
- Lattice Transmission Towers And Monopoles
- Utility Poles

1. Installed Base of Electricity Transmission Towers & Monopoles
- Global Installed Base of Towers And Monopoles
 - North America
 - Europe
 - Cis
 - Middle East
 - North Africa
 - Sub-Saharan Africa
 - Asia Pacific
 - Lac

2. Electricity Transmission Towers Market
- Global Demand for Towers
 - North America
 - Europe
 - Cis
 - Middle East
Africa
Asia Pacific
Lac

3. Long Term Demand Cycles for Electricity Towers And Monopoles
Growth of Transmission Line Networks

4. Monopoles Vs. Lattice Towers
Netherlands
Scandinavia
Denmark
Iceland
Finland
United Kingdom
Italy
France
Asia Pacific
Middle East
Latin America
South Africa
Cost
Space Requirements
Reduction of the Electromagnetic Field
Foundations

5. Types of Tower Or Pylons
Suspension Tower
Tension Towers
Angle Suspension Tower
Termination Or Dead End Towers, Also Called Tension Towers
Transposition Towers
Tower Installation
Build-Up Or Piecemeal Method.
Section Method
Ground Assembly Method
Helicopter Method.

6. Transmission Towers Design

7. Utility Poles
Installed Base of Poles By Country And Utility, 2016
Voltage Levels of Electricity Sub-Transmission And Distribution Poles

8. Installed Base of Poles By Country And Material

9. Growth of the Pole Population

10. Demand for Poles
Demand in Numbers of Poles
Demand for Poles 2015 to 2020

11. Demand for Poles By Value

12. Composite Poles
Introduction
Development of Composite Technology And Poles in the Us
Price/Cost
Safety Factor
Materials for Composites And the Manufacturing Processes
Filament Winding
Pultrusion
Testing Composites
Scandinavian Trials of Composites
Advantages of Composite Poles
Composite And Fibreglass Maintenance
Service Life of Composites And Other Materials
Hardware Modifications
Modular Poles
Manufacturers of Composite Poles And Hardware
Cross Arms

13. the Value Chain - from Materials to Capex
The Value Chain at 6 Levels

14. National Markets for Poles
United States
Europe
Austria
Czech Republic
Cyprus
Finland
France
Germany
Greece
Ireland
Netherlands
Norway
Spain
Sweden
Switzerland
United Kingdom:
Russia
Japan
China
India
Korea
Singapore And Macau
Australia
Middle East
Africa

15. Material Composition of Poles And Service Life
Materials
Use
Description
Size Classification
H5 - H1
1-5
6-10
Wood
Wood Preservatives
Pollution from Wood Preservatives - Leaching
Steel
Concrete
Composites- Fibreglass
Disposal

16. Pole Span

17. Types of Poles
Other Equipment
Grounding Rod
Dead-End (Anchor Or Termination) Poles
Physical Access
Construction Classifications
18. Space Allocation On Joint Use Utility Poles
Supply Space
Safety Zone Space
Communications Space

19. Service Life And Maintenance of Steel Lattice Towers And Monopoles
Service Life
Maintenance
Phase 1 - Coffee Stain Rust
Phase 2 - Abrasive Rust
Phase 3 - Extensive Abrasive Rust
Phase 4 - Crash

20. Service Life And Maintenance of Poles
Wooden Poles
Service Life
Maintenance
Groundline Treatment
Internal Treatment
Concrete Poles
Steel Poles
Composite Poles

21. Manufacturers of Lattice Towers And Poles
Chinese Manufacturers
Indian Manufacturers
Kec International
Other Asian Manufacturers
North American Manufacturers
Brazil
Turkey

22. Manufacturers of Distribution Poles
North American Manufacturers
African Manufacturers
Indian Manufacturers

23. Circuit Phases And Conductors
Single Circuit
Double Circuit
Multiple Conductors
Restrictions On Multiple Use of Corridors

24. Competitions for Tower Design

25. Rights of Way
Multiple Use of Rows

26. Danger to And from Birds
Extent of the Problem
The Mechanics of An Electrocution
Mitigation And Prevention of Collisions
Mitigation And Prevention of Electrocution

Methodology
The Installed Base And Demand
The Model of the Demand Cycle
Creation of the Databases of Towers And Poles
Short Term Demand Forecast
Street Lights
Validation

Figures:
Figure 1: Global Installed Electricity Transmission Towers, 2015-2020
Figure 2: Global Installed Electricity Transmission Towers By Regions, 2016
Figure 3: Regional Growth in Electricity Transmission Towers, 2015-2020
Figure 4: Global Installed Electricity Transmission Towers, North America, 2015-20
Figure 5: Global Installed Electricity Transmission Towers, Europe, 2015-20
Figure 6: Global Installed Electricity Transmission Towers, CIS, 2015-20
Figure 7: Global Installed Electricity Transmission Towers, Middle East, 2015-20
Figure 8: Global Installed Electricity Transmission Towers, North Africa, 2015-20
Figure 9: Global Installed Electricity Transmission Towers, Sub-Saharan Africa, 2015-20
Figure 10: Global Installed Electricity Transmission Towers, Asia Pacific, 2015-20
Figure 11: Global Installed Electricity Transmission Towers, South America, 2015-20
Figure 12: Global Installed Electricity Transmission Towers, Central America, 2015-20
Figure 13: World Sales of Electricity Transmission Towers, Nominal $, 2015-2020
Figure 14: Sales of Electricity Transmission Towers By Regions, Nominal $, 2016
Figure 15: the Global Networks of Transmission Lines, Length in Route Km 1900 to 2050
Figure 16: the Evolution of Transmission Line Voltage, the First Introductions
Figure 17: the Long Term Demand Cycles for Towers, 1900 to 2050
Figure 18: Annual New And Replacement Installations of Towers, 1900 to 2050
Figure 19: the Market for Lattice Towers And Poles in the USA, $, 2015
Figure 20: European Countries Installing New EHV Monopoles
Figure 21: Some New Designs Being Installed in Europe
Figure 22: New 400 Kv Monopole Designs in the Netherlands
Figure 23: New EHV Poles in Scandinavia
Figure 24: New 400 Kv Transmission Monopoles in Denmark.
Figure 25: Iceland New 220 Kv Transmission Towers
Figure 26: New 400 Kv And 275 Kv Transmission Monopoles in the United Kingdom.
Figure 27: a Camouflaged 400 Kv Transmission Monopole in the United Kingdom
Figure 28: Terna And 380 Kv Monopoles
Figure 29: New 380 Kv Monopole in Dubai
Figure 30: Comparison of the Footprint of a Monopole Versus a Lattice Tower.
Figure 31: Reduction of Electromagnetic Fields And Space Requirements
Figure 32: Economy of Foundations
Figure 33: Suspension Tower, Single Steel Pole
Figure 34: Lattice Steel Suspension Tower (L6 Used in the United Kingdom)
Figure 35: Installation of Transmission Tower By Helicopter
Figure 36: Peak And Cage of a Transmission Tower
Figure 37: Cross Arm And Body of a Transmission Tower
Figure 38: 220-KV Single-Circuit LST
Figure 39: 500-KV Single-Circuit LST
Figure 40: 220-KV Double-Circuit LST
Figure 41: 500-KV Double-Circuit LST
Figure 42: Historical Growth of the Pole Population; Electricity Mv/Lv Poles, Telegraph Poles, Street Lights, 1900 to 2015, Forecast to 2050
Figure 43: Demand for Poles; Electricity Mv/Lv Poles, Telegraph Poles, Street Lights, 1900 to 2015, Forecast to 2050
Figure 44: Additions And Replacements for Poles; Electricity Mv/Lv Poles, Telegraph Poles, Street Lights, 1900 to 2015, Forecast to 2050
Figure 45: New Additions And Replacements of Poles With a 35 Year Service Life, 1900 to 2040
Figure 46: Global Demand for Electricity Mv/Lv Poles, Telegraph Poles, Street Lights By Country in Value Nominal $, North America, 2015-2020
Figure 47: a Nest of Poles for Shipment
Figure 48: Utility Pole in Japan
Figure 49: Lines in Bolivia (Left) Have Considerably Longer Span Than Lines in Laos (Right)
Figure 50: Double-Circuit, 138-Kv Line On Wood Structures
Figure 51: Double-Circuit, 138-Kv Line On Galvanized Steel Poles
Figure 52: Single-Circuit 138-Kv Line On Weathering Steel.
Figure 53: H-Frame Wood Structure
Figure 54: Space Allocations On a Joint Utility Pole
Figure 55: Supply Space On a Utility Pole
Figure 56: Safety Zone Space On a Utility Pole
Figure 57: the Communications Space in a Utility Pole
Figure 58: the Principle of Exponential Corrosion
Figure 59: Phase 1 - Coffee Stain Rust
Figure 60: Phase 2 - Abrasive Rust
Figure 61: Phase 3 - Abrasive Rust
Figure 62: Phase 3 - the Tower Falls
Figure 63: Outline of Potential Decay Patterns
Figure 64: Decay in a Wood Utility Pole
Figure 65: Tower for Single Circuit, Three Phase System (Three Conductors)
Figure 66: Tower for Double Circuit, Three Phase System (Six Conductors)
Figure 67: Tower for Multiple Circuits, Three Phase System (Twelve Conductors)
Figure 68: Multiple Lines, Lattice Towers And Monopoles in Same Corridor
Figure 69: Dietmar Koering of Arphenotype, Competition for Icelandic Electrical Transco/1
Figure 70: Dietmar Koering of Arphenotype, Competition for Icelandic Electrical Transco/2
Figure 71: Dietmar Koering of Arphenotype, Competition for Icelandic Electrical Transco/3
Figure 72: Y Pylon By Knight Architects Competition for National Grid 2012
Figure 73: Plexus By Arup for National Grid 2012
Figure 74: the Land of Giants, Iceland, Choi & Shine
Figure 75: a Distribution Line Right of Way
Figure 76: a Wetland-Scrub/Shrub-Dominated Community the First Year After a Mow.
Figure 77: a Grass-Dominated Community in An Agricultural Matrix the First Year After a Mow.
Figure 78: An Example of a Single Row Corridor.
Figure 79: An Example of Parallel Transmission Row Corridor
Figure 80: Typical European Right of Way Cross Section, Self-Supporting Tower
Figure 81: Typical European Right of Way Cross Section, Guyed Tower
Figure 82: Right-Of-Way Comparison for Equivalent Capacity of 765-Kv And 345-Kv Lines
Figure 83: Blue Crane Electrocuted in South Africa
Figure 84: White Storks in Their Nest On a Utility Pole in Vladeni in Romania
Figure 85: An Example of a Pole-Mounted Transformer
Figure 86: Distribution Pole With Symmetric Chevron (Arrow) On Top As Bird Exclusion Device
Figure 87: Dedicated Nesting Pole Next to Distribution Pole With Bird Exclusion Device
Figure 88: Additions And Replacements from 1945 to 1950
Figure 89: Additions And Replacements from 1900 to 1950
Figure 90: Comparison of the Installed Base An Annual Demand for Towers, 1900 to 2050

Tables:
Table 1: Global Installed Electricity Transmission Towers, By Region, 2014-2020
Table 2: Global Installed Electricity Transmission Towers, North America, 2015-20
Table 3: Global Installed Electricity Transmission Towers, Europe, 2015-20
Table 4: Global Installed Electricity Transmission Towers, Cis, 2015-20
Table 5: Global Installed Electricity Transmission Towers, Middle East, 2015-20
Table 6: Global Installed Electricity Transmission Towers, North Africa, 2015-20
Table 7: Global Installed Electricity Transmission Towers, Sub-Saharan Africa, 2015-20
Table 8: Global Installed Electricity Transmission Towers, Asia Pacific, 2015-20
Table 9: Global Installed Electricity Transmission Towers, South America, 2015-20
Table 10: Global Installed Electricity Transmission Towers, Central America, 2015-20
Table 11: Sales of Electricity Transmission Towers By Regions, Nominal $, 2016
Table 12: Sales of Electricity Transmission Towers, North America, Nominal $, 2015-2020
Table 13: Sales of Electricity Transmission Towers, Europe, Nominal $, 2015-2020
Table 14: Sales of Electricity Transmission Towers, Cis, Nominal $, 2015-2020
Table 15: Sales of Electricity Transmission Towers, Middle East, Nominal $, 2015-2020
Table 16: Sales of Electricity Transmission Towers, North Africa, Nominal $, 2015-2020
Table 17: Sales of Electricity Transmission Towers, Sub-Saharan Africa, Nominal $, 2015-2020
Table 18: Sales of Electricity Transmission Towers, Asia, Nominal $, 2015-2020
Table 19: Sales of Electricity Transmission Towers, Pacific, Nominal $, 2015-2020
Table 20: Sales of Electricity Transmission Towers, South America, Nominal $, 2015-2020
Table 21: Sales of Electricity Transmission Towers, Central America, Nominal $, 2015-2020
Table 22: Numbers of Electricity Poles, Telegraph Poles And Streetlights, 2016
Table 23: Electricity, Telegraph Poles And Street Lights in North America, 2016
Table 24: Electricity, Telegraph Poles And Street Lights in Europe, 2016
Table 25: Electricity, Telegraph Poles And Street Lights in Cis, 2016
Table 26: Electricity, Telegraph Poles And Street Lights in the Middle East, 2016
Table 27: Electricity, Telegraph Poles And Street Lights in North Africa, 2016
Table 28: Electricity, Telegraph Poles And Street Lights in Sub-Saharan Africa, 2016
Table 29: Electricity, Telegraph Poles And Street Lights in Asia, 2016
Table 30: Electricity, Telegraph Poles And Street Lights in Pacific, 2016
Table 31: Electricity, Telegraph Poles And Street Lights in South America, 2016
Table 32: Electricity, Telegraph Poles And Street Lights in Central America, 2016
Table 33: Numbers of Electricity Poles, Telegraph Poles And Streetlights By Material, 2016
Table 34: Electricity, Telegraph Poles And Street Lights in North America By Material, 2016
Table 35: Electricity, Telegraph Poles And Street Lights in Europe By Material, 2016
Table 36: Electricity, Telegraph Poles And Street Lights in Cis By Material, 2016
Table 37: Electricity, Telegraph Poles And Street Lights in the Middle East By Material, 2016
Table 38: Electricity, Telegraph Poles And Street Lights in North Africa By Material, 2016
Table 39: Electricity, Telegraph Poles And Street Lights in Sub-Saharan Africa By Material, 2016
Table 40: Electricity, Telegraph Poles And Street Lights in Asia By Material, 2016
Table 41: Electricity, Telegraph Poles And Street Lights in Pacific By Material, 2016
Table 42: Electricity, Telegraph Poles And Street Lights in South America By Material, 2016
Table 43: Electricity, Telegraph Poles And Street Lights in Central America By Material, 2016
Table 44: Installed Base of Electricity Poles, Telegraph Poles And Street Lights, 2015 - 2020
Table 45: Installed Base of Electricity, Telegraph Poles And Street Lights in North America, 2015 - 2020
Table 46: Installed Base of Electricity, Telegraph Poles And Street Lights in Europe, 2015 - 2020
Table 47: Installed Base of Electricity, Telegraph Poles And Street Lights in Cis, 2015 - 2020
Table 48: Installed Base of Electricity, Telegraph Poles And Street Lights in the Middle East, 2015 - 2020
Table 49: Installed Base of Electricity, Telegraph Poles And Street Lights in North Africa, 2015 - 2020
Table 50: Installed Base of Electricity, Telegraph Poles And Street Lights, South America, 2015-20
Table 51: Installed Base of Electricity, Telegraph Poles And Street Lights in Asia, 2015 - 2020
Table 52: Installed Base of Electricity, Telegraph Poles And Street Lights in Pacific, 2015 - 2020
Table 53: Installed Base of Electricity, Telegraph Poles And Street Lights, Central America, 2015-20
Table 54: New Additions And Replacements of Poles With a 35 Year Service Life, 1900 to 2040
Table 55: Demand for Electricity Mv/Lv Poles, Telegraph Poles, Street Lights By Region, 2015-2
Table 56: Demand for Electricity Mv/Lv Poles, Telegraph Poles, Street Lights By Country, North America,2015-2020
Table 57: Demand for Electricity Mv/Lv Poles, Telegraph Poles, Street Lights By Country, Europe, 201
Table 58: Demand for Electricity Mv/Lv Poles, Telegraph Poles, Street Lights By Country, Cis, 2015-
Table 59: Demand for Electricity Mv/Lv Poles, Telegraph Poles, Street Lights By Country, Middle East, 2015-
Table 60: Demand for Electricity Mv/Lv Poles, Telegraph Poles, Street Lights By Country, North Africa, 2015-

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3841647/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3841647/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SC2GU2VY</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) -</td>
<td>USD 3813</td>
</tr>
<tr>
<td>Single User:</td>
<td></td>
</tr>
<tr>
<td>Electronic (PDF) -</td>
<td>USD 6672</td>
</tr>
<tr>
<td>1 - 20 Users:</td>
<td></td>
</tr>
<tr>
<td>Electronic (PDF) -</td>
<td>USD 9532</td>
</tr>
<tr>
<td>Enterprisewide:</td>
<td></td>
</tr>
</tbody>
</table>

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof

First Name: ___________________________ Last Name: ___________________________

Email Address: * ___________________________

Job Title: ___________________________

Organisation: ___________________________

Address: ___________________________

City: ___________________________

Postal / Zip Code: ___________________________

Country: ___________________________

Phone Number: ___________________________

Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World