Introduction to Computational Chemistry. 3rd Edition

Description: Introduction to Computational Chemistry 3rd Edition provides a comprehensive account of the fundamental principles underlying different computational methods. Fully revised and updated throughout to reflect important method developments and improvements since publication of the previous edition, this timely update includes the following significant revisions and new topics:

* Polarizable force fields
* Tight-binding DFT
* More extensive DFT functionals, excited states and time dependent molecular properties
* Accelerated Molecular Dynamics methods
* Tensor decomposition methods
* Cluster analysis
* Reduced scaling and reduced prefactor methods

Contents:
Preface to the First Edition xv
Preface to the Second Edition xix
Preface to the Third Edition xxi
1 Introduction 1
 1.1 Fundamental Issues 2
 1.2 Describing the System 3
 1.3 Fundamental Forces 3
 1.4 The Dynamical Equation 5
 1.5 Solving the Dynamical Equation 7
 1.6 Separation of Variables 8
 1.7 Classical Mechanics 11
 1.8 Quantum Mechanics 13
 1.9 Chemistry 18
References 19
2 Force Field Methods 20
 2.1 Introduction 20
 2.2 The Force Field Energy 21
 2.3 Force Field Parameterization 53
 2.4 Differences in Atomistic Force Fields 62
 2.5 Water Models 66
 2.6 Coarse Grained Force Fields 67
2.7 Computational Considerations 69
2.8 Validation of Force Fields 71
2.9 Practical Considerations 73
2.10 Advantages and Limitations of Force Field Methods 73
2.11 Transition Structure Modeling 74
2.12 Hybrid Force Field Electronic Structure Methods 78

References 82

3 Hartree- Fock Theory 88
3.1 The Adiabatic and Born- Oppenheimer Approximations 90
3.2 Hartree- Fock Theory 94
3.3 The Energy of a Slater Determinant 95
3.4 Koopmans’ Theorem 100
3.5 The Basis Set Approximation 101
3.6 An Alternative Formulation of the Variational Problem 105
3.7 Restricted and Unrestricted Hartree- Fock 106
3.8 SCF Techniques 108
3.9 Periodic Systems 119

References 121

4 Electron Correlation Methods 124
4.1 Excited Slater Determinants 125
4.2 Configuration Interaction 128
4.3 Illustrating how CI Accounts for Electron Correlation, and the RHF Dissociation Problem 135
4.4 The UHF Dissociation and the Spin Contamination Problem 138
4.5 Size Consistency and Size Extensivity 142
4.6 Multiconfiguration Self-Consistent Field 143
4.7 Multireference Configuration Interaction 148
4.8 Many-Body Perturbation Theory 148
4.9 Coupled Cluster 157
4.10 Connections between Coupled Cluster, Configuration Interaction and Perturbation Theory 162
4.11 Methods Involving the Interelectronic Distance 166
4.12 Techniques for Improving the Computational Efficiency 169
4.13 Summary of Electron Correlation Methods 174
4.14 Excited States 176
4.15 Quantum Monte Carlo Methods 183
References 185
5 Basis Sets 188
5.1 Slater– and Gaussian–Type Orbitals 189
5.2 Classification of Basis Sets 190
5.3 Construction of Basis Sets 194
5.4 Examples of Standard Basis Sets 200
5.5 Plane Wave Basis Functions 208
5.6 Grid and Wavelet Basis Sets 210
5.7 Fitting Basis Sets 211
5.8 Computational Issues 211
5.9 Basis Set Extrapolation 212
5.10 Composite Extrapolation Procedures 215
5.11 Isogyric and Isodesmic Reactions 222
5.12 Effective Core Potentials 223
5.13 Basis Set Superposition and Incompleteness Errors 226
References 228
6 Density Functional Methods 233
6.1 Orbital–Free Density Functional Theory 234
6.2 Kohn–Sham Theory 235
6.3 Reduced Density Matrix and Density Cumulant Methods 237
6.4 Exchange and Correlation Holes 241
6.5 Exchange–Correlation Functionals 244
6.6 Performance of Density Functional Methods 258
6.7 Computational Considerations 260
6.8 Differences between Density Functional Theory and Hartree–Fock 262
6.9 Time–Dependent Density Functional Theory (TDDFT) 263
6.10 Ensemble Density Functional Theory 268
6.11 Density Functional Theory Problems 269
6.12 Final Considerations 269
17.1 Numbers, Vectors, Matrices and Tensors 543
17.2 Change of Coordinate System 549
17.3 Coordinates, Functions, Functionals, Operators and Superoperators 560
17.3.1 Differential Operators 562
17.4 Normalization, Orthogonalization and Projection 563
17.5 Differential Equations 565
17.6 Approximating Functions 568
17.7 Fourier and Laplace Transformations 577
17.8 Surfaces 577
References 580
18 Statistics and QSAR 581
18.1 Introduction 581
18.2 Elementary Statistical Measures 583
18.3 Correlation between Two Sets of Data 585
18.4 Correlation between Many Sets of Data 588
18.5 Quantitative Structure Activity Relationships (QSAR) 595
18.6 Non–linear Correlation Methods 597
18.7 Clustering Methods 598
References 604
19 Concluding Remarks 605
Appendix A 608
Notation 608
Appendix B 614
The Variational Principle 614
The Hohenberg Kohn Theorems 615
The Adiabatic Connection Formula 616
Reference 617
Appendix C 618
Atomic Units 618
Appendix D 619
Z Matrix Construction 619
Appendix E 627
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Introduction to Computational Chemistry. 3rd Edition
Web Address: http://www.researchandmarkets.com/reports/3844079/
Office Code: SC2GC62G

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hard Copy (Paper back):</th>
<th>USD 93 + USD 28 Shipping/Handling</th>
</tr>
</thead>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ___________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World