Proteomics - Technologies, Markets and Companies

Description: This report describes and evaluates the proteomic technologies that will play an important role in drug discovery, molecular diagnostics and practice of medicine in the post-genomic era - the first decade of the 21st century. Most commonly used technologies are 2D gel electrophoresis for protein separation and analysis of proteins by mass spectrometry. Microanalytical protein characterization with multidimensional liquid chromatography/mass spectrometry improves the throughput and reliability of peptide mapping. Matrix-Assisted Laser Desorption Mass Spectrometry (MALDI-MS) has become a widely used method for determination of biomolecules including peptides, proteins. Functional proteomics technologies include yeast two-hybrid system for studying protein-protein interactions. Establishing a proteomics platform in the industrial setting initially requires implementation of a series of robotic systems to allow a high-throughput approach for analysis and identification of differences observed on 2D electrophoresis gels. Protein chips are also proving to be useful. Proteomic technologies are now being integrated into the drug discovery process as complimentary to genomic approaches. Toxicoproteomics, i.e. the evaluation of protein expression for understanding of toxic events, is an important application of proteomics in preclinical drug safety. Use of bioinformatics is essential for analyzing the massive amount of data generated from both genomics and proteomics.

Proteomics is providing a better understanding of pathomechanisms of human diseases. Analysis of different levels of gene expression in healthy and diseased tissues by proteomic approaches is as important as the detection of mutations and polymorphisms at the genomic level and may be of more value in designing a rational therapy. Protein distribution/characterization in body tissues and fluids, in health as well as in disease, is the basis of the use of proteomic technologies for molecular diagnostics. Proteomics will play an important role in medicine of the future which will be personalized and will combine diagnostics with therapeutics. Important areas of application include cancer (oncoproteomics) and neurological disorders (neuroproteomics). The text is supplemented with 44 tables, 28 figures and over 500 selected references from the literature.

The number of companies involved in proteomics has increased remarkably during the past few years. More than 300 companies have been identified to be involved in proteomics and 223 of these are profiled in the report with 456 collaborations.

The markets for proteomic technologies are difficult to estimate as they are not distinct but overlap with those of genomics, gene expression, high throughput screening, drug discovery and molecular diagnostics. Markets for proteomic technologies are analyzed for the year 2015 and are projected to years 2020 and 2025. The largest expansion will be in bioinformatics and protein biochip technologies. Important areas of application are cancer and neurological disorders.

Contents:

Part I: Technologies & Markets

0. Executive Summary

1. Basics of Proteomics
 Introduction
 History
 Nucleic acids, genes and proteins
 Genome
 DNA
 RNA
 MicroRNAs
 Decoding of mRNA by the ribosome
 Genes
 Alternative splicing
 Transcription
 Gene regulation
 Gene expression
Chromatin
Golgi complex
Proteins
Spliceosome
Functions of proteins
Inter-relationship of protein, mRNA and DNA
Proteomics
Endoplasmic reticulum
Mitochondrial proteome
S-nitrosoproteins in mitochondria
Proteomics and genomics
Classification of proteomics
Levels of functional genomics and various "omics"
Glycoproteomics
Transcriptomics
Metabolomics
Cytomics
Phenomics
Impact of the genetic factors on the human proteome
Proteomics and systems biology
Proteomics and synthetic biology
Functional synthetic proteins
Synthetic proteomics for study of apoptosis

2. Proteomic Technologies
Key technologies driving proteomics
Sample preparation
New trends in sample preparation
Pressure Cycling Technology
Protein separation technologies
High resolution 2DGE
Variations of 2D gel technology
Limitations of 2DGE and measures to overcome these
1-D sodium dodecyl sulfate (SDS) PAGE
Capillary electrophoresis systems
Head column stacking capillary zone electrophoresis
Removal of albumin and IgG
SeraFILE™ separations platform
Companies with protein separation technologies
Protein purification
Technologies for protein purification
Applications of protein purification
Protein detection
Protein identification and characterization
Mass spectrometry
Electrospray ionization
Desorption electrospray ionization MS
Miroscia 3500 MiD
Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry
Cryogenic MALDI- Fourier Transform Mass Spectrometry
Stable-isotope-dilution tandem mass spectrometry
HUPO Gold MS Protein Standard
Companies involved in mass spectrometry
High performance liquid chromatography
Multidimensional protein identification technology (MudPIT)
Multiple reaction monitoring assays
Peptide mass fingerprinting
Current status and future prospects of clinical mass spectrometry
Combination of protein separation technologies with mass spectrometry
Combining capillary electrophoresis with mass spectrometry
2D PAGE and mass spectrometry
Quantification of low abundance proteins
SDS-PAGE
Antibodies and proteomics
Detection of fusion proteins
Labeling and detection of proteins
Fluorescent labeling of proteins in living cells
Combination of microspheres with fluorescence
Self-labeling protein tags
Analysis of peptides
C-terminal peptide analysis
Differential Peptide Display
Peptide analyses using NanoLC-MS
Protein sequencing
Real-time PCR for protein quantification
Quantitative proteomics
MS-based quantitative proteomics
MS and cryo-electron tomography
Selected reaction monitoring MS
Functional proteomics: technologies for studying protein function
Functional genomics by mass spectrometry
LC-MS-based method for annotating the protein-coding genome
RNA-Protein fusions
Designed repeat proteins
Application of nanobiotechnology to proteomics
Nanoproteomics
Nanoflow liquid chromatography
Nanopores for phosphoprotein analysis
Nanotube electronic biosensor for proteomics
Protein nanocrystallography
Single-molecule mass spectrometry using a nanopore
Nanoelectrospray ionization
Nanoproteomics for discovery of protein biomarkers in the blood
QD-protein nanoassembly
Nanoparticle barcodes
Biobarc ode assay for proteins
Nanopore-based protein sequencing
Nanoscale protein analysis
Nanoscale mechanism for protein engineering
Nanotube electronic biosensor
Nanotube-vesicle networks for study of membrane proteins
Qdot-nanocrystals
Resonance Light Scattering technology
Study of single membrane proteins at subnanometer resolution
Protein expression profiling
Cell-based protein assays
Living cell-based assays for protein function
Companies developing cell-based protein assays
Protein function studies
Transcriptionally Active PCR
Protein-protein interactions
Bacterial protein interaction studies for assigning function
Bioluminescence Resonance Energy Transfer
Computational prediction of interactions
Detection Enhanced Ubiquitin Split Protein Sensor technology
Double Switch technology
Fluorescence Resonance Energy Transfer
In vivo study of protein-protein interactions
In vitro study of protein-protein interactions
Interactome
Membrane 1-hybrid method
Nanowire transistor for the detection of protein-protein interactions
Phage display
Protein affinity chromatography
Protein-fragment complementation system
Proximity-dependent hybridization chain reaction
Yeast 2-hybrid system
Companies with technologies for protein-protein interaction studies
Protein-DNA interaction
Determination of protein structure
X-Ray crystallography
Nuclear magnetic resonance
Electron spin resonance
Prediction of protein structure
Protein tomography
X-ray scattering-based method for determining the structure of proteins
Prediction of protein function
Three-dimensional proteomics for determination of function
An algorithm for genome-wide prediction of protein function
Monitoring protein function by expression profiling
Isotope-coded affinity tag peptide labeling
Differential Proteomic Panning
Cell map proteomics
Topological proteomics
Organelle or subcellular proteomics
Nucleolar proteomics
Glycoproteomic technologies
High-sensitivity glycoprotein analysis
Fluorescent in vivo imaging of glycoproteins
Integrated approaches for protein characterization
Imaging mass spectrometry
IMS technologies
Applications of IMS
The protein microscope
Tag-Mass IMS
Automation and robotics in proteomics
Western blot
Limitations of WB
Innovations in WB
Capillary electrophoresis and WB
Chemiluminescent western blotting
Fluorescent WB
Microfluidics and WB
Multiplexing WB
Applications of Western blot
Research applications of Western blot
Molecular diagnostic applications of Western blot
Companies involved in Western blotting technologies
Laser capture microdissection
Microdissection techniques used for proteomics
Uses of LCM in combination with proteomic technologies
Concluding remarks about applications of proteomic technologies
Precision proteomics

3. Protein biochip technology
Introduction
Types of protein biochips
ProteinChip
Applications and advantages of ProteinChip
ProteinChip Biomarker System
Matrix-free ProteinChip Array
Aptamer-based protein biochip
Fluorescence planar wave guide technology-based protein biochips
Lab-on-a-chip for protein analysis
Biochips for peptide arrays
Microfluidic biochips for proteomics
Protein biochips for high-throughput expression
Nucleic Acid-Programmable Protein Array
High-density protein microarrays
HPLC-Chip for protein identification
Antibody microarrays
Integration of protein array and image analysis
Tissue microarray technology for proteomics
Protein biochips in molecular diagnostics
A force-based protein biochip
L1 chip and lipid immobilization
Multiplexed Protein Profiling on Microarrays
Live cell microarrays
ProteinArray Workstation
Proteome arrays
The Yeast ProtoArray
ProtoArray? Human Protein Microarray
TRINECTIN proteome chip
Peptide arrays
Surface plasmon resonance technology
Biacore’s SPR
FLEX CHIP
Combination of surface plasmon resonance and MALDI-TOF
Protein chips/microarrays using nanotechnology
Nanoparticle protein chip
Protein nanobiochip
Protein nanoarrays
Self-assembling protein nanoarrays
Companies involved in protein biochip/microarray technology

4. Bioinformatics in Relation to Proteomics
Introduction
Bioinformatic tools for proteomics
Testing of SELDI-TOF MS Proteomic Data
BioImagine’s ProteinMine
Bioinformatics for pharmaceutical applications of proteomics
In silico search of drug targets by Biopendium
Compugen’s LEADS
DrugScore
Proteochemometric modeling
Integration of genomic and proteomic data
Proteomic databases: creation and analysis
Introduction
Proteomic databases
GenProtEC
Human Protein Atlas
Human Proteomics Initiative
Human proteome map
International Protein Index
MS-based draft of the human proteome
Protein Structure Initiative ? Structural Genomics Knowledgebase
Protein Warehouse Database
Protein Data Bank
Repository for raw data from proteomics MS
Universal Protein Resource
Protein interaction databases
Biomolecular Interaction Network Database
ENCODE
Functional Genomics Consortium
Human Proteinpedia
ProteinCenter
Databases of the National Center for Biotechnology Information
Application of bioinformatics for protein identification
Tandem MS for protein identification
Targeted MS for specific identification of proteins
Application of bioinformatics in functional proteomics
Use of bioinformatics in protein sequencing
5. Research in Proteomics

Introduction
Applications of proteomics in biological research
Identification of novel human genes by comparative proteomics
Study of relationship between genes and proteins
Characterization of histone codes
Structural genomics or structural proteomics
Protein Structure Factory
Protein Structure Initiative
Studies on protein structure at Argonne National Laboratory
Structural Genomics Consortium
Protein knockout
Antisense approach and proteomics
RNAi and protein knockout
Total knockout of cellular proteins
Ribozymes and proteomics
Single molecule proteomics
Single-molecule photon stamping spectroscopy
Single nucleotide polymorphism determination by TOF-MS
Application of proteomic technologies in systems biology
Signaling pathways and proteomics
Kinomics
Combinatorial RNAi for quantitative protein network analysis
Proteomics in neuroscience research
Stem cell proteomics
Comparative proteomic analysis of somatic cells, iPSCs and ESCs
hESC phosphoproteome
Proteomic studies of mesenchymal stem cells
Proteomics of neural stem cells
Proteome Biology of Stem Cells Initiative
Proteomic analysis of the cell cycle
Nitric oxide and proteomics
A proteomic method for identification of cysteine S-nitrosylation sites
Study of the nitroproteome
Study of the phosphoproteome
Study of the mitochondrial proteome
Proteomic technologies for study of mitochondrial proteomics
Cryptome
Study of protein transport in health and disease
Ancient proteomics
Proteomics research in the academic sector
Netherlands Proteins@Work
ProteomeBinders initiative
Rutgers University's Center for Integrative Proteomics Research
Vanderbilt University's Center for Proteomics and Drug Actions

6. Pharmaceutical Applications of Proteomics

Introduction
Current drug discovery process and its limitations
Role of omics in drug discovery
Genomics-based drug discovery
Metabolomics technologies for drug discovery
Role of metabonomics in drug discovery
Basis of proteomics approach to drug discovery
Proteins and drug action
Transcription-aided drug design
In vivo production of therapeutic proteins by mRNA
Role of proteomic technologies in drug discovery
Liquid chromatography-based drug discovery
Capture compound mass spectrometry
Protein-expression mapping by 2DGE
Protein-protein interactions and drug discovery
Role of MALDI mass spectrometry in drug discovery
Structural proteomics and drug discovery
Tissue imaging mass spectrometry
Oxford Genome Anatomy Project
Proteins as drug targets
Monitoring drug target binding using the cellular thermal shift assay
Ligands to capture the purine binding proteome
Chemical probes to interrogate key protein families for drug discovery
Global proteomics for pharmacodynamics
ProteoCarta® proteomics platform
ZeptoMARK® protein profiling system
Role of proteomics in targeting disease pathways
Dynamic proteomics
Identification of protein kinases as drug targets
Mechanisms of action of kinase inhibitors
G-protein coupled receptors as drug targets
Methods of study of GPCRs
Cell-based assays for GPCR
Companies involved in GPCR-based drug discovery
GPCR localization database
Matrix metalloproteases as drug targets
PDZ proteins as drug targets
Proteasome as drug target
Serine hydrolases as drug targets
Targeting mTOR signaling pathway
Targeting caspase-8 for anticancer therapeutics
Drug design based on structural proteomics
Protein crystallography for determining 3D structure of proteins
Automated 3D protein modeling
Drug targeting of flexible dynamic proteins
Companies involved in structure-based drug-design
Integration of genomics and proteomics for drug discovery
Ligand-receptor binding
Role of proteomics in study of ligand-receptor binding
Measuring drug binding of proteins
Aptamer protein binding
Systematic Evolution of Ligands by Exponential Enrichment
Aptamers and high-throughput screening
Nucleic Acid Biotools
Aptamer beacons
Peptide aptamers
Riboreporters for drug discovery
Target identification and validation
Application of mass spectrometry for target identification
Gene knockout and gene suppression for validating protein targets
Laser-mediated protein knockout for target validation
Integrated proteomics for drug discovery
High-throughput proteomics
Companies involved in high-throughput proteomics
Drug discovery through protein-protein interaction studies
Protein-protein interaction as basis for drug target identification
Protein-PCNA interaction as basis for drug design
Two-hybrid protein interaction technology for target identification
Biosensors for detection of small molecule-protein interactions
Protein-protein interaction maps
ProNet (Myriad Genetics)
Hybrigenics' maps of protein-protein interactions
CellZome's functional map of protein-protein interactions
Mapping of protein-protein interactions by mass spectrometry
Protein interaction map of Drosophila melanogaster
Protein-interaction map of Wellcome Trust Sanger Institute
Protein-protein interactions as targets for therapeutic intervention
Inhibition of protein-protein interactions by peptide aptamers
Selective disruption of proteins by small molecules
Post-genomic combinatorial biology approach
Differential proteomics
Shotgun proteomics
Targeted proteomics
Chemogenomics/chemoproteomics for drug discovery
Chemoproteomics-based drug discovery
Companies involved in chemogenomics/chemoproteomics
Activity-based proteomics
Locus Discovery technology
Automated ligand identification system
Expression proteomics: protein level quantification
Role of phage antibody libraries in target discovery
Analysis of posttranslational modification of proteins by MS
Phosphoproteomics for drug discovery
Application of glycoproteomics for drug discovery
Role of carbohydrates in proteomics
Challenges of glycoproteomics
Companies involved in glycoproteomics
Role of protein microarrays/ biochips for drug discovery
Protein microarrays vs DNA microarrays for high-throughput screening
BIA-MS biochip for protein-protein interactions
ProteinChip with Surface Enhanced Neat Desorption
Protein-domains microarrays
Some limitations of protein biochips
Concluding remarks about role of proteomics in drug discovery
RNA versus protein profiling as guide to drug development
RNA as drug target
Combination of RNA and protein profiling
RNA binding proteins
Toxicoproteomics
Hepatotoxicity
Nephrotoxicity
Cardiotoxicity
Neurotoxicity
Protein/peptide therapeutics
Alphabody technology for improving protein therapeutics
Peptide-based drugs
Phylomer® peptides
Cryptein-based therapeutics
Synthetic proteins and peptides as pharmaceuticals
Genetic immunization and proteomics
Role of proteomics in synthetic antivenoms
Proteomics and gene therapy
Role of proteomics in clinical drug development
Pharmacoproteomics
Role of proteomics in clinical drug safety

7. Application of Proteomics in Human Healthcare
Introduction
Clinical proteomics
Definition and standards
Vermillion's Clinical Proteomics Program
Pathophysiology of human diseases
Diseases due to misfolding of proteins
Mechanism of protein folding
Nanoproteomics for study of misfolded proteins
Therapies for protein misfolding
Intermediate filament proteins
Significance of mitochondrial proteome in human disease
Proteome of Saccharomyces cerevisiae mitochondria
Rat mitochondrial proteome
Proteomic approaches to biomarker identification
The ideal biomarker
Proteomic technologies for biomarker discovery
MALDI mass spectrometry for biomarker discovery
Protein biochips/microarrays and biomarkers
Affinity proteomics for discovery of biomarkers
Antibody array-based biomarker discovery
Discovery of biomarkers by MAAb microarray profiling
Tumor-specific serum peptidome patterns
Search for protein biomarkers in body fluids
Challenges and strategies for discovery of protein biomarkers in plasma
3-D structure of CD38 as a biomarker
BD™ Free Flow Electrophoresis System
Isotope tags for relative and absolute quantification
N-terminal peptide isolation from human plasma
Plasma protein microparticles as biomarkers
Proteome partitioning
SISCAPA method for quantitating proteins and peptides in plasma
Stable isotope tagging methods
Technology to measure both the identity and size of the biomarker
Biomarkers in the urinary proteome
Application of proteomics in molecular diagnosis
MassARRAY
Proximity ligation assay
Protein patterns
Proteomic tests on body fluids
Cyclical amplification of proteins
Applications of proteomics in infections
MALDI-TOF MS for microbial identification
Recognition of microbial glycans by human lectins
Role of proteomics in virology
Interaction of proteins with viruses
Quantitative temporal viromics
Role of proteomics in bacteriology
Epidemiology of bacterial infections
Proteomic approach to bacterial pathogenesis
Vaccines for bacterial infections
Protein profiles associated with bacterial drug resistance
Analyses of the parasite proteome
Application of proteomics in cystic fibrosis
Proteomics of cardiovascular diseases
Pathomechanism of cardiovascular diseases
Protein misfolding in cardiac dysfunction
Study of cardiac mitochondrial proteome in myocardial ischemia
Cardiac protein databases
Proteomics of dilated cardiomyopathy and heart failure
Proteomic biomarkers of cardiovascular diseases
Regulation of cardiac rhythmicity by Purkinje cell protein-4
Role of proteomics in cardioprotection
Role of proteomics in heart transplantation
Future of application of proteomics in cardiology
Proteomic technologies for research in pulmonary disorders
Application of proteomics in renal disorders
Diagnosis of renal disorders
Proteomic biomarkers of acute kidney injury
Cystatin C as biomarker of glomerular filtration rate
Protein biomarkers of nephritis
Proteomics and kidney stones
Proteomics of eye disorders
Proteomics of cataract
Proteomics of diabetic retinopathy
Retinal dystrophies
Use of proteomics in inner ear disorders
Use of proteomics in aging research
Alteration of glycoproteins during aging
Carbamylation of proteins with aging
Proteomics of muscle aging
Removal of altered cellular proteins in aging
Role of protein aggregation in aging and degenerative diseases
Study of the role of Parkin in modulating aging
Proteomics and nutrition

8. Oncoproteomics
Introduction
Proteomic technologies for study of cancer
Application of CellCarta technology for oncology
Accentuation of differentially expressed proteins using phage technology
Cancer tissue proteomics
Dynamic cell proteomics in response to a drug
Desorption electrospray ionization for cancer diagnosis
Id proteins as targets for cancer therapy
Identification of oncogenic tyrosine kinases using phosphoproteomics
Laser capture microdissection technology and cancer proteomics
Mass spectrometry for identification of oncogenic chimeric proteins
Proteomic analysis of cancer cell mitochondria
Proteomic study of p53
Human Tumor Gene Index
Integration of cancer genomics and proteomics
Role of proteomics in study of cancer stem cell biology
Single-cell protein expression analysis by microfluidic techniques
Use of proteomics in cancers of various organ systems
Proteomics of brain tumors
Malignant glial tumors
Meningiomas
DESI-MS for intraoperative diagnosis of brain tumors
Proteomics of breast cancer
Integration of proteomic and genomic data for breast cancer
Proteomics of colorectal cancer
Proteomics of esophageal cancer
Proteomics of hepatic cancer
Proteomics of leukemia
Proteomics of lung cancer
Proteomics of pancreatic cancer
Proteomics of prostate cancer
Proteomics of renal cancer
Diagnostic use of cancer biomarkers
Proteomic technologies for tumor biomarkers
Nuclear matrix proteins (NMPs)
Anticancer drug discovery and development
Anticancer drug targeting: functional proteomics screen of proteases
Kinase-targeted drug discovery in oncology
Protein-drug interactions in cancer
Role of proteomics in studying drug resistance in cancer
Small molecule inhibitors of cancer-related proteins
Future prospects of oncoproteomics
International oncoproteomic initiatives
9. Neuroproteomics

Introduction
Application of proteomics for the study of nervous system
Proteomics of prion diseases
Normal function of prions in the brain
Diseases due to pathological prion protein
Transmissible spongiform encephalopathies
Creutzfeld-Jakob disease
Bovine spongiform encephalopathy
Variant Creutzfeldt-Jakob disease
Protein misfolding and neurodegenerative disorders
Ion channel link for protein-misfolding disease
Detection of misfolded proteins
Neurodegenerative disorders with protein abnormalities
Alzheimer disease
Common denominators of Alzheimer and prion diseases
Parkinson disease
Amyotrophic lateral sclerosis
Proteomics and glutamate repeat disorders
Proteomics and Huntington's disease
Proteomics and demyelinating diseases
Proteomics of neurogenetic disorders
Fabry disease
GM1 gangliosidosis
Quantitative proteomics and familial hemiplegic migraine
Proteomics of spinal muscular atrophy
Proteomics of CNS trauma
Proteomics of traumatic brain injury
Chronic traumatic encephalopathy and ALS
Proteomics of cerebrovascular disease
Pathogenesis of cerebral small vessel disease
Proteomics of CNS aging
Protein aggregation as a biomarker of aging
Neuroproteomics of psychiatric disorders
Schizophrenia
Anxiety disorders
Depression and suicidal behavior
Neuroproteomic of cocaine addiction
Neurodiagnostics based on proteomics
Disease-specific proteins in the cerebrospinal fluid
Tau proteins
CNS tissue proteomics
Diagnosis of CNS disorders by examination of proteins in urine
Diagnosis of CNS disorders by examination of proteins in the blood
Serum pNF-H as biomarker of CNS damage
Proteomics of BBB
Future prospects of neuroproteomics in neurology
HUPO's Pilot Brain Proteome Project

10. Proteomics Markets

Introduction
Potential markets for proteomic technologies
Bioinformatics markets for proteomics
Markets for protein separation technologies
Markets for 2D gel electrophoresis
Market trends in protein separation technologies
Protein purification markets
Mass spectrometry markets
Markets for MALDI for drug discovery
Markets for nuclear magnetic resonance spectroscopy
Market for structure-based drug design
Markets for protein biomarkers
Markets for cell-based protein assays
Protein biochip markets
Western blot markets
Geographical distribution of proteomics technologies markets
Business and strategic considerations
Cost of protein structure determination
Opinion surveys of the scientist consumers of proteomic technologies
Opinions on mass spectrometry
Opinions on bioinformatics and proteomic databases
Systems for in vivo study of protein-protein interactions
Perceptions of the value of protein biochip/microfluidic systems
Small versus big companies
Expansion in proteomics according to area of application
Growth trends in cell-based protein assay market
Challenges for development of cell-based protein assays
Future trends and prospects of cell-based protein assays
Strategic collaborations
Analysis of proteomics collaborations according to types of companies
Types of proteomic collaborations
Proteomics collaborations according to application areas
Analysis of proteomics collaborations: types of technologies
Collaborations based on protein biochip technology
Concluding remarks about proteomic collaborations
Proteomic patents
Market drivers in proteomics
Needs of the pharmaceutical industry
Need for outsourcing proteomic technologies
Funding of proteomic companies and research
Technical advances in proteomics
Changing trends in healthcare in future
Challenges facing proteomics
Magnitude and complexity of the task
Technical challenges
Limitations of proteomics
Limitations of 2DGE
Limitations of mass spectrometry techniques
Complexity of the pharmaceutical proteomics
Unmet needs in proteomics

11. Future of Proteomics
Genomics to proteomics
Faster technologies
FLEXGene repository
Need for new proteomic technologies
Emerging proteomic technologies
Detection of alternative protein isoforms
Direct protein identification in large genomes by mass spectrometry
Proteome identification kits with stacked membranes
Vacuum deposition interface
In vitro protein biosynthesis
Proteome mining with adenosine triphosphate
Proteome-scale purification of human proteins from bacteria
Proteostasis network
Cytoproteomics
Subcellular proteomics
Individual cell proteomics
Live cell proteomics
Fluorescent proteins for live-cell imaging
Membrane proteomics
Identification of membrane proteins by tandem MS of protein ions
Solid state NMR for study of nanocrystalline membrane proteins
Multiplex proteomics
High-throughput for proteomics
Future directions for protein biochip application
Bioinformatics for proteomics
High-Throughput Crystallography Consortium
Study of protein folding by IBM's Blue Gene
Study of proteins by atomic force microscopy
Population proteomics
Comparative proteome analysis
Human Proteome Organization
Cell-based Human Proteome Project
Human Salivary Proteome
Academic-commercial collaborations in proteomics
Indiana Centers for Applied Protein Sciences
Role of proteomics in the healthcare of the future
Proteomics and molecular medicine
Proteodiagnostics
Proteomics and personalized medicine
Targeting the ubiquitin pathway for personalized therapy of cancer
Protein patterns and personalized medicine
Personalizing interferon therapy of hepatitis C virus
Protein biochips and personalized medicine
Combination of diagnostics and therapeutics
Future prospects

12. References

Tables
Table 1-1: Landmarks in the evolution of proteomics
Table 1-2: Comparison of DNA and protein
Table 1-3: Comparison of mRNA and protein
Table 1-4: Methods of analysis at various levels of functional genomics
Table 2-1: Proteomics technologies
Table 2-2: Protein separation technologies of selected companies
Table 2-3: Companies supplying mass spectrometry instruments
Table 2-4: Companies involved in cell-based protein assays
Table 2-5: Methods used for the study of protein-protein interactions
Table 2-6: A selection of companies involved in protein-protein interaction studies
Table 2-7: Companies involved in Western blotting
Table 2-8: Proteomic technologies used with laser capture microdissection
Table 3-1: Applications of protein biochip technology
Table 3-2: Selected companies involved in protein biochip/microarray technology
Table 4-1: Proteomic databases and other Internet sources of proteomics information
Table 4-2: Protein interaction databases available on the Internet
Table 4-3: Bioinformatic tools for proteomics from academic sources
Table 4-4: Selected companies involved in bioinformatics for proteomics
Table 5-1: Applications of proteomics in basic biological research
Table 5-2: A sampling of proteomics research projects in academic institutions
Table 6-1: Pharmaceutical applications of proteomics
Table 6-2: Selected companies relevant to MALDI-MS for drug discovery
Table 6-3: Selected companies involved in GPCR-based drug discovery
Table 6-4: Companies involved in drug design based on structural proteomics
Table 6-5: Proteomic companies with high-throughput protein expression technologies
Table 6-6: Selected companies involved in chemogenomics/chemoproteomics
Table 6-7: Companies involved in glycoproteomic technologies
Table 7-1: Applications of proteomics in human healthcare
Table 7-2: Eye disorders and proteomic approaches
Table 8-1: Large scale international oncoproteomic initiatives
Table 8-2: Companies involved in applications of proteomics to oncology
Table 9-1: Neurodegenerative diseases with underlying protein abnormality
Table 9-2: Disease-specific proteins in the cerebrospinal fluid of patients
Table 10-1: Potential markets for proteomic technologies 2015-2025
Table 10-2: Geographical distribution of markets for proteomic technologies 2015-2025
Table 11-1: Role of proteomics in personalizing strategies for cancer therapy

Figures
Figure 1-1: A schematic miRNA pathway
Figure 1-2: Relationship of DNA, RNA and protein in the cell
Figure 1-3: Protein production pathway from gene expression to functional protein with controls.
Figure 1-4: Parallels between functional genomics and proteomics
Figure 2-1: Proteomics: flow from sample preparation to characterization
Figure 2-2: The central role of spectrometry in proteomics
Figure 2-3: Electrospray ionization (ESI)
Figure 2-4: Matrix-Assisted Laser Desorption/Ionization (MALDI)
Figure 2-5: Scheme of bio-bar-code assay
Figure 2-6: A diagrammatic presentation of yeast 2-hybrid system
Figure 3-1: ProteinChip System
Figure 3-2: Surface plasma resonance (SPR)
Figure 4-1: Role of bioinformatics in integrating genomic/proteomic-based drug discovery
Figure 4-2: Bottom-up and top-down approaches for protein sequencing
Figure 6-1: Drug discovery process
Figure 6-2: Regulatory changes induced by drugs and implemented at the proteins level.
Figure 6-3: Relation of proteome to genome, diseases and drugs
Figure 6-4: The mTOR pathways
Figure 6-5: Steps in shotgun proteomics
Figure 6-6: Chemogenomic approach to drug discovery (3-Dimensional Pharmaceuticals)
Figure 8-1: Relation of oncoproteomics to other technologies
Figure 9-1: A scheme of proteomics applications in CNS drug discovery and development
Figure 10-1: Types of companies involved in proteomics collaborations
Figure 10-2: Types of collaborations: R & D, licensing or marketing
Figure 10-3: Proteomics collaborations according to application areas
Figure 10-4: Proteomics collaborations according to technologies
Figure 10-5: Unmet needs in proteomics
Figure 11-1: A scheme of the role of proteomics in personalized management of cancer

Part II: Companies

11. Companies involved in developing proteomics
Introduction
Profiles of selected companies
Collaborations
Tables

Table 11-1: Companies with proteomics as the main activity/service
Table 11-2: Selected companies with equipment and laboratory services for proteomics
Table 11-3: Biotechnology and drug discovery companies involved in proteomics
Table 11-4: Bioinformatics companies involved in proteomics
Table 11-5: Biopharmaceutical companies with in-house proteomics technology
Table 11-6: Major players in proteomics
Table 10-7: Selected collaborations of companies in the area of proteomics

Ordering:
Order Online - http://www.researchandmarkets.com/reports/39072/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Proteomics - Technologies, Markets and Companies
Web Address: http://www.researchandmarkets.com/reports/39072/
Office Code: SCBR1LKI

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic - Single User</td>
<td></td>
<td>USD 5000</td>
</tr>
<tr>
<td>Hard Copy</td>
<td></td>
<td>USD 5500 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic and Hard Copy</td>
<td></td>
<td>USD 6000 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic - Enterprisewide</td>
<td></td>
<td>USD 15000</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World