Quantitative Microbiology in Food Processing. Modeling the Microbial Ecology

Description:
Microorganisms are essential for the production of many foods, including cheese, yoghurt, and bread, but they can also cause spoilage and diseases. Quantitative Microbiology of Food Processing: Modeling the Microbial Ecology explores the effects of food processing techniques on these microorganisms, the microbial ecology of food, and the surrounding issues concerning contemporary food safety and stability.

Whilst literature has been written on these separate topics, this book seamlessly integrates all these concepts in a unique and comprehensive guide. Each chapter includes background information regarding a specific unit operation, discussion of quantitative aspects, and examples of food processes in which the unit operation plays a major role in microbial safety. This is the perfect text for those seeking to understand the quantitative effects of unit operations and beyond on the fate of foodborne microorganisms in different foods.
Quantitative Microbiology of Food Processing is an invaluable resource for students, scientists, and professionals of both food engineering and food microbiology.

Contents:
List of contributors xvi

Part I Introductory section 1

1 Introduction to the microbial ecology of foods 3
D. Roy and G. LaPointe

1.1 Introduction 3

1.2 Role of food characteristics and environment on microbial fate 4

1.3 Understanding microbial growth, death, persistence, competition, antagonism and survival in food 8

1.4 Methods to study the microbial ecology of foods 11

1.5 Perspectives on applying food ecosystem modeling 12

References 13

2 Predictive microbiology: mathematics towards understanding the fate of food borne microorganisms in food processing 16
P.N. Skandamis and E.Z. Panagou

2.1 Introduction 16

2.2 Probability and kinetic models for food processing and HACCP 18

2.3 Thermal inactivation 32

2.4 Non thermal inactivation and modeling stress adaptation strategies 34

2.5 Fermentation: a dynamic environment for microbial growth and pathogen inactivation 38

2.6 Colonial versus planktonic type of growth: modes of microbial existence on surfaces and in liquid, semi liquid, and solid foods 41

2.7 Modeling microbial transfer between processing equipment and foods 45
2.8 Alternative multivariate approaches: the use of bioinformatics for characterizing spoilage and product classification 49

References 51

3 Principles of unit operations in food processing 68
A. Ibarz and P.E.D. Augusto

3.1 Introduction 68

3.2 Principles of transport phenomena 68

3.3 Principles and unit operations of momentum transfer 69

3.4 Principles and unit operations of heat transfer 73

3.5 Principles and unit operations of mass transfer 81

3.6 Conclusions 82

References 83

Part II Impact of unit operations on microorganisms of relevance in foods 85

4 Impact of materials handling at pre and post harvest operations on the microbial ecology of foods of vegetable origin 87
A.N. Olaimat, P.J. Delaquis, and R.A. Holley

4.1 Introduction 87

4.2 The production environment 90

4.3 Soil 91

4.4 Fertilizers derived from animal wastes 92

4.5 Irrigation 93

4.6 Harvesting and handling 98

4.7 Postharvest processing 99

4.8 Packaging, storage, and transportation 101

4.9 Conclusions 103

References 103

5 Impact of heating operations on the microbial ecology of foods 117
E. Xanthakis and V.P. Valdramidis

5.1 Background and basic information of heating operations 117

5.2 Quantitative aspects and how unit operations impact on food borne microorganisms 131

5.3 Application of F value concept 132

5.4 Dealing with non linearity 133

5.5 Development of new concepts to assess heat processes 135

5.6 Microbial safety and stability of heating operations: challenges and perspectives 136
References 136

6 Impact of refrigeration operations on the microbial ecology of foods 142
L. Huang

6.1 Introduction 142
6.2 Refrigeration as a unit operation 143
6.3 Dynamic effect of chilling on growth of C. perfringens during cooling 147

References 158

7 Impact of dehydration and drying operations on the microbial ecology of foods 160
F. Pérez Rodríguez, E. Carrasco, and A. Valero

7.1 Introduction 160
7.2 Modeling the drying process in food 161
7.3 Modeling microbial survival/inactivation in drying/dehydration processes 163
7.4 Example of application-development of predictive microbiology models for describing microbial death during drying processes 169
7.5 Conclusions 173

References 173

8 Impact of irradiation on the microbial ecology of foods 176
S. Unluturk

8.1 Introduction 176
8.2 Ionizing radiation 176
8.3 Non-ionizing radiation 180

References 187

9 Impact of high pressure processing on the microbial ecology of foods 194
S. Mukhopadhyay, D.O. Ukuku, V. Juneja, and R. Ramaswamy

9.1 Introduction 194
9.2 Processing operation 195
9.3 Bacteria and enzyme inactivation 195
9.4 Effect of high pressure on fruit and vegetable products 198
9.5 Effect of HHP on meat and other food products 198
9.6 Effect of added antimicrobial on pathogen inactivation by high pressure processing (hurdle approach) 199
9.7 High pressure carbon dioxide (HPCD) disinfection 200
9.8 Effect of HHP on bacteria, virus, insects, and other organisms 201
9.9 Effect of HHP on quality: color, flavor, texture, sugar, totally soluble, and insolubles 203
9.10 Advantages and disadvantages of using HHP 205
9.11 Applications and conclusions 205

References 206

10 Impact of Vacuum packaging, modified and controlled atmosphere on the microbial ecology of foods 217
L. Angiolillo, A. Conte, and M.A.D. Nobile

10.1 Introduction 217

10.2 Vacuum packaging 218

10.3 Controlled atmosphere 219

10.4 Modified atmosphere packaging 220

References 223

11 Impact of fermentation on the microbial ecology of foods 226
M. Mataragas, K. Rantsiou, and L. Cocolin

11.1 Introduction 226

11.2 Fermentations: microbial ecology and activity 227

11.3 Factors affecting food borne pathogen inactivation during fermentation 227

11.4 Challenge tests 229

11.5 Predictive modeling 230

11.6 Conclusions 236

References 236

12 Impact of forming and mixing operations on the microbial ecology of foods: focus on pathogenic microorganisms 241
J.C.C.P. Costa, G.D. Posada Izquierdo, F. Perez Rodriguez, and R.M. Garcia Gimeno

12.1 Forming 241

12.2 Homogenizing 244

12.3 Mixing 246

References 248

13 Impact of specific unit operations on food borne microorganisms: curing, salting, extrusion, puffing, encapsulation, absorption, extraction, distillation, and crystallization 250
E. Ortega Rivas, S.B. Perez Vega, and I. Salmeron

13.1 Introductory remarks 250

13.2 Burden of food borne illnesses 250

13.3 Food safety and food quality 251

13.4 Prevention and control through processing 251

13.5 Conclusions and prospects for the future 260

References 261
14 Impact of food unit operations on virus loads in foods 263
D. Li, A.D. Keuckelaere, and M. Uyttendaele

14.1 Introduction 263
14.2 The use of surrogate viruses to assess inactivation processes 263
14.3 Virus contamination in food processing 264
14.4 Survival of virus in the food processing chain 267
14.5 Effect of food preservation techniques on the virus load 267
14.6 Conclusion and perspectives 280

References 281

15 Impact of food unit operations on parasites in foods: focus on selected parasites within the fresh produce industry 288
L.J. Robertson

15.1 Background and introduction 288
15.2 Detection of selected parasites in fresh produce 299
15.3 Effects of fresh produce treatments on selected parasites 303
15.4 Conclusion 315

References 316

16 Impact of food unit operations on probiotic microorganisms 327
A. Gandhi and N.P. Shah

16.1 Introduction 327
16.2 Probiotic products 328
16.3 probiotics and environmental stress: cellular mechanisms and resistance 328
16.4 Enhancing stress resistance of probiotics 332
16.5 Conclusion 334

References 334

Part III Microbial ecology of food products 339

17 Microbial ecology of fresh vegetables 341

17.1 Introduction 341
17.2 Prevalence and diversity of microbial communities on fresh vegetables (post harvest) 341
17.3 Post harvest persistence, colonization, and survival on fresh vegetables 342
17.4 Routes of contamination during post harvest handling of fresh and fresh cut vegetables 345
17.5 Microbial adaptation on produce commodity 347
17.6 Effective post harvest intervention technologies 348
References 350

18 Microbial ecology of fruits and fruit based products 358
S. Paramithiotis, E.H. Drosinos, and P.N. Skandamis

18.1 Introduction 358
18.2 Fresh whole fruits 359
18.3 Minimally processed fruits 367
18.4 Processed fruits 372
Acknowledgments 374

References 374

19 Microbial ecology of cereal and cereal based foods 382
A. Bevilacqua, M. Sinigaglia, and M.R. Corbo

19.1 Introduction 382
19.2 Sourdough 382
19.3 Ethnic fermented foods 384
19.4 Spoilage of cereals and cereal products 385

References 388

20 Microbial ecology of nuts, seeds, and sprouts 390
M.S. Rhee, S.A. Kim, and N.H. Kim

20.1 Introduction 390
20.2 Definition and classification of nuts, seeds, and sprouts 390
20.3 Microbial ecology of nuts and seeds 391
20.4 Microbial ecology of sprouts and their corresponding seeds 400
20.5 Implications and perspectives 409

References 410

21 Microbial ecology of eggs: a focus on Salmonella and microbial contamination in post harvest table shell egg production 416
S.C. Ricke

21.1 Introduction 416
21.2 Historical and current trends in commercial egg production 417
21.3 Egg production management on the farm and incidence of Salmonella 420
21.4 Egg processing and microbial contamination: general aspects 421
21.5 Microbial contamination during egg collection at the farm to in line processing 423
21.6 Microbial contamination during transportation to off line egg processing facilities 424
21.7 Microbial contamination during egg processing 425
21.8 Egg washwater and sanitation 426
21.9 Egg retail and microbial contamination 428
21.10 Conclusions and future directions 429
Acknowledgment 431
References 431

22 Microbial ecology of beef carcasses and beef products 442
X. Yang
22.1 Introduction 442
22.2 Carcass production process 442
22.3 Carcass breaking 451
References 455

23 Microbial ecology of pork meat and pork products 463
L. Iacumin and J. Carballo
23.1 Introduction 463
23.2 Pork meat as a substrate for microbial growth: chemical and physical characteristics 464
23.3 Microbial ecology of fresh pork meat: sources of contamination and microbial groups 465
23.4 Microbial ecology of chilled pork meat 467
23.5 Microbial ecology of vacuum/modified atmosphere packaged pork meat 468
23.6 Microbial ecology of marinated pork meat 469
23.7 Microbial ecology of cured and fermented/ripened pork meats 470
23.8 Microbial ecology of high pressure preserved pork meat 473
References 474

24 Microbial ecology of poultry and poultry products 483
S. Buncic, D. Antic, and B. Blagojevic
24.1 Introduction 483
24.2 Microbial hazard identification and prioritization 483
24.3 Microbial aspects of poultry processing at abattoirs 484
24.4 Microbial aspects of derived poultry meat products 492
References 497

25 Microbial ecology of seafoods: a special emphasis on the spoilage microbiota of North Sea seafood 499
K. Broekaert, G. Vlaemynck, and M. Heyndrickx
25.1 Introduction 499
25.2 Total viable counts (TVCs) and microorganisms identified depends on the method used 499
25.3 The initial microbiota of marine fish 501
32.6 Heterogeneity in bacterial (spore) physiology during germination and outgrowth 623

32.7 Steps towards single cell physiology and omics measurements 625

References 626

33 Role of stress response on microbial ecology of foods and its impact on the fate of food borne microorganisms 631
A. Alvarez Ordóñez, M. López, and M. Prieto

33.1 Introduction 631

33.2 Acquisition of permanent stress tolerance through adaptive mutagenesis 631

33.3 Transient adaptive responses to stress: modulation of membrane fluidity as an example 634

33.4 Using food components to survive under harsh conditions 636

33.5 The balance between self preservation and nutritional competence (SPANC) 639

33.6 Conclusions and future prospects 641

Acknowledgment 643

References 643

Index 649

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3939849/

Order by Fax - using the form below

Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Quantitative Microbiology in Food Processing. Modeling the Microbial Ecology
Web Address: http://www.researchandmarkets.com/reports/3939849/
Office Code: SC2GUT4U

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): USD 207 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World