The Global Market For Nanotechnology In Flexible, Stretchable And Printable Electronics And Displays

Description:

The Global Market for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays examines the markets, application developers and enabling technologies and materials.

The electronics industry will witness significant change and growth in the next decade, and the integration of nanomaterials into products in the electronics sector is gathering pace. Nanomaterials exhibit extraordinary electrical properties, and have a huge potential in electrical and electronic applications such as photovoltaics, sensors, remote health monitoring and medicine, semiconductor devices, displays, conductors, smart textiles and energy conversion devices (e.g., fuel cells, harvesters and batteries).

Market drivers for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays include:

- Scaling- Power requirement and performance no longer scale with feature size
- Growth of mobile wireless devices
- Growth in the Internet of Things increasing demand for low-power devices, RF and wireless, sensors, energy harvesting devices etc.
- Electronics entering every area of our lives
- Growth in flexible electronics needs in the automotive industry
- Growth in wearables and remote diagnostics in medicine and healthcare
- Demand for high-resolution, low-power displays

This report is based on an extensive market study of advances in fields such as nanotechnology, printed electronics electronics and conducting materials, and includes:

- Market drivers and trends
- Nanomaterials utilized in Flexible, Stretchable and Printable Electronics and Displays
  - Applications
  - Electronic textiles
  - Electronic paper
  - Wearable health monitoring
  - Automotive HMI and displays
  - QD displays market
  - Touchscreens and ITO replacement
  - Conductive films
  - Electronics coatings
  - Application developers

Contents:

1 Research Methodology
1.1 Commercial Impact Rating System
1.2 Market Challenges Rating System

2 Executive Summary
2.1 Market Drivers And Trends
  2.1.1 Scaling
  2.1.2 Growth of mobile wireless devices
  2.1.3 Internet of things (IoT)
  2.1.4 Data, logic and applications moving to the Cloud
  2.1.5 Ubiquitous electronics
  2.1.5.1 Growth in automotive interior electronics
  2.1.5.2 Growth in wearable medical diagnostics
  2.1.6 Nanomaterials for new device design and architectures
  2.1.7 Carbon and 2D nanomaterials
  2.1.8 Industrial collaborations
3 Nanomaterials
3.1 Properties of nanomaterials
3.2 Categorization

4 Nanomaterials In Flexible, Stretchable & Printable Electronics & Displays
4.1 Carbon Nanotubes
  4.1.1 Properties
  4.1.2 Applications
  4.1.3 Demand by market
  4.1.4 Technology readiness level (TRL)
4.2 Graphene
  4.2.1 Properties
  4.2.2 Applications
  4.2.3 Demand by market
  4.2.4 Technology readiness level (TRL)
4.3 Nanocellulose
  4.3.1 Properties
  4.3.2 Applications
  4.3.3 Demand by market
  4.3.4 Technology readiness level (TRL)
4.4 Nanosilver
  4.4.1 Properties
  4.4.2 Applications
  4.4.3 Demand by market
  4.4.4 Technology readiness level (TRL)
4.5 Nanowires
  4.5.1 Properties
  4.5.2 Applications
  4.5.3 Demand by market
  4.5.4 Technology readiness level (TRL)
4.6 Quantum Dots
  4.6.1 Properties
  4.6.2 Applications
  4.6.3 Demand by market
  4.6.4 Technology readiness level (TRL)
4.7 Graphene And Carbon Quantum Dots
  4.7.1 Properties
  4.7.2 Applications
  4.7.3 Demand by market
  4.7.4 Technology readiness level (TRL)
4.8 2D Materials
  4.8.1 Black phosphorus/Phosphorene
    4.8.1.1 Properties
    4.8.1.2 Applications in electronics
  4.8.2 C2N
    4.8.2.1 Properties
    4.8.2.2 Applications in electronics
  4.8.3 Germanene
    4.8.3.1 Properties
    4.8.3.2 Applications in electronics
  4.8.4 Graphdiyne
    4.8.4.1 Properties
    4.8.4.2 Applications in electronics
  4.8.5 Graphane
    4.8.5.1 Properties
    4.8.5.2 Applications in electronics
    4.8.5.3 Properties
    4.8.5.4 Applications in electronics
  4.8.6 Molybdenum disulfide (MoS2)
    4.8.6.1 Properties
    4.8.6.2 Applications in electronics
  4.8.7 Rhenium disulfide (ReS2) and diselenide (ReSe2)
    4.8.7.1 Properties
    4.8.7.2 Applications in electronics
  4.8.8 Silicene
4.8.8.1 Properties
4.8.8.2 Applications in electronics
4.8.9 Stanene/tinene
4.8.9.1 Properties
4.8.9.2 Applications in electronics
4.8.10 Tungsten diselenide
4.8.10.1 Properties
4.8.10.2 Applications in electronics

5 Flexible And Stretchable Electronics, Conductive Films And Displays Markets
5.1 Market Drivers And Trends
5.1.1 ITO replacement for flexible electronics
5.1.2 Growth in the wearable electronics market
5.1.3 Growth of HMI and display systems in the automotive industry
5.1.4 Touch technology requirements
5.1.5 Energy needs of wearable devices
5.1.6 Increased power and performance of sensors with reduced cost
5.1.7 Growth in the printed sensors market
5.1.8 Growth in the home diagnostics and point of care market
5.2 Applications
5.2.1 Transparent electrodes in flexible electronics
5.2.1.1 SWNTs
5.2.1.2 Double-walled carbon nanotubes
5.2.1.3 Graphene
5.2.1.4 Silver nanowires
5.2.1.5 Nanocellulose
5.2.1.6 Copper nanowires
5.2.1.7 Nanofibers
5.2.2 Wearable electronics
5.2.2.1 Current state of the art
5.2.2.2 Nanotechnology solutions
5.2.3 Electronic paper
5.2.4 Wearable sensors
5.2.4.1 Current state of the art
5.2.4.2 Nanotechnology solutions
5.2.4.3 Wearable gas sensors
5.2.4.4 Wearable strain sensors
5.2.4.5 Wearable tactile sensors
5.2.5 Wearable health monitoring
5.2.5.1 Current state of the art
5.2.5.2 Nanotechnology solutions
5.2.6 Wearable energy storage and harvesting devices
5.2.6.1 Current state of the art
5.2.6.2 Nanotechnology solutions
5.2.7 Automotive HMI and displays
5.2.8 Quantum dot displays
5.2.8.1 On-edge (edge optic)
5.2.8.2 On-surface (film)
5.2.8.3 On-chip
5.2.8.4 Quantum rods
5.2.8.5 Quantum converters with red phosphors
5.3 Market Size And Opportunity
5.3.1 Touch panel and ITO replacement
5.3.2 Displays
5.3.3 Wearable electronics
5.3.4 Wearable health monitoring
5.3.5 Wearable energy storage and harvesting devices
5.4 Market Challenges
5.4.1 Manufacturing
5.4.2 Competing materials
5.4.3 Cost in comparison to ITO
5.4.4 Fabricating SWNT devices
5.4.5 Fabricating graphene devices
5.4.6 Problems with transfer and growth
5.4.7 Improving sheet resistance
5.4.8 High surface roughness of silver nanowires
5.4.9 Electrical properties
5.4.10 Difficulties in display panel integration
5.5 Application And Product Developers 207-239 (70 Company Profiles)

6 Conductive Inks And Printed Electronics
6.1 Market Drivers And Trends
6.1.1 Increased demand for printed electronics
6.1.2 Limitations of existing conductive inks
6.1.3 Growth in the 3D printing market
6.1.4 Growth in the printed sensors market
6.2 Applications
6.3 Market Size And Opportunity
6.3.1 Total market size
6.3.2 Nanotechnology and nanomaterials opportunity
6.4 Market Challenges
6.5 Application And Product Developers 249-261 (26 Company Profiles)

7 Electronics Coatings
7.1 Market Drivers And Trends
7.1.1 Demand for multi-functional, active coatings
7.1.2 Waterproofing and permeability
7.1.3 Improved aesthetics and reduced maintenance
7.1.4 Proliferation of touch panels
7.1.5 Need for efficient moisture and oxygen protection in flexible and organic electronics
7.1.6 Electronics packaging
7.1.7 Growth in the optical and optoelectronic devices market
7.1.8 Improved performance and cost over traditional AR coatings
7.1.9 Growth in the solar energy market
7.2 Applications
7.2.1 Waterproof nanocoatings
7.2.1.1 Barrier films
7.2.1.2 Hydrophobic coatings
7.2.2 Anti-fingerprint nanocoatings
7.2.3 Anti-reflection nanocoatings
7.3 Market Size And Opportunity
7.3.1 Total market size
7.3.1.1 Anti-fingerprint nanocoatings
7.3.1.2 Anti-reflective nanocoatings
7.3.1.3 Waterproof nanocoatings
7.4 Market Challenges
7.4.1 Durability
7.4.2 Dispersion
7.4.3 Cost
7.5 Application And Product Developers 282-293 (22 Company Profiles)

8 References

List of Tables

Table 1: Semiconductor Components of IoT Devices
Table 2: Nanoelectronics in next generation information processing
Table 3: Nanoelectronics industrial collaborations and target markets
Table 4: Categorization of nanomaterials
Table 5: Nanomaterials in electronics
Table 6: Properties of CNTs and comparable materials
Table 7: Markets, benefits and applications of Carbon Nanotubes
Table 8: Properties of graphene
Table 9: Markets, benefits and applications of graphene
Table 10: Consumer products incorporating graphene
Table 11: Nanocellulose properties
Table 12: Properties and applications of nanocellulose
Table 13: Markets and applications of nanocellulose
Table 14: Markets, benefits and applications of nanosilver
Table 15: Markets, benefits and applications of nanowires
Table 16: Electronics markets and applications nanowires
Table 17: Markets, benefits and applications of quantum dots
Table 18: Schematic of (a) QDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1 - 4
Table 19: Properties of graphene quantum dots
Table 20: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2.
Table 21: Comparison of ITO replacements
Table 22: Properties of SWNTs and graphene relevant to flexible electronics
Table 23: Comparative cost of TCF materials
Table 24: Wearable electronics devices and stage of development
Table 25: Applications in electronic textiles, by nanomaterials type and benefits thereof.
Table 26: Graphene properties relevant to application in sensors
Table 27: Wearable medical device products and stage of development
Table 28: Applications in flexible and stretchable health monitors, by nanomaterials type and benefits thereof
Table 29: Applications in patch-type skin sensors, by nanomaterials type and benefits thereof.
Table 30: Wearable energy and energy harvesting devices and stage of development.
Table 31: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof
Table 32: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof
Table 33: Applications in energy harvesting textiles, by nanomaterials type and benefits thereof.
Table 34: Advantages and disadvantages of LCDs, OLEDs and QDs
Table 35: Approaches for integrating QDs into displays
Table 36: Commercially available quantum dot display products
Table 37: Application markets, competing materials, nanomaterials advantages and current market size in flexible substrates
Table 38: Commercially available quantum dot display products
Table 39: Nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market-applications, stage of commercialization and estimated economic impact
Table 40: Global market for wearables, 2014-2021, units and US$.
Table 41: Potential addressable market for smart textiles and wearables in medical and healthcare.
Table 42: Potential addressable market for thin film, flexible and printed batteries
Table 43: Market assessment for the nanotechnology in the wearable energy storage (printed and flexible battery) market
Table 44: Market assessment for the nanotechnology in the wearable energy harvesting market
Table 45: Market challenges rating for nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market
Table 46: Comparative properties of conductive inks
Table 47: Applications in conductive inks by nanomaterials type and benefits thereof
Table 48: Opportunities for nanomaterials in printed electronics
Table 49: Nanotechnology and nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact
Table 50: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market.
Table 51: Properties of nanocoatings
Table 52: Nanocoatings applied in the consumer electronics industry
Table 53: Anti-reflective nanocoatings-Markets and applications
Table 54: Market opportunity for anti-reflection nanocoatings
Table 55: Nanotechnology and nanomaterials in the electronics coatings market-applications, stage of commercialization and estimated economic impact
Table 56: Market challenges rating for nanotechnology and nanomaterials in the electronics coatings market

List of Figures

Figure 1: Demand for carbon nanotubes, by market
Figure 2: Technology Readiness Level (TRL) for Carbon Nanotubes
Figure 3: Graphene layer structure schematic
Figure 4: Demand for graphene, by market
Figure 5: Technology Readiness Level (TRL) for graphene
Figure 6: Hierarchical Structure of Wood Biomass
Figure 7: Types of nanocellulose
Figure 8: Electronics markets and applications of nanocellulose
Figure 9: Nanocellulose photoluminescent paper
Figure 10: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF
Figure 11: Demand for nanocellulose, by market
Figure 12: Technology Readiness Level (TRL) for nanocellulose
Figure 13: Supply chain for nanosilver products
Figure 14: Demand for nanosilver, by market
Figure 15: Demand for nanowires, by market
Figure 16: Technology Readiness Level (TRL) for nanowires
Figure 17: Quantum dot
Figure 18: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each color is limited to a narrow band.
Figure 19: Demand for quantum dots, by market
Figure 20: Technology Readiness Level (TRL) for quantum dots
Figure 21: Black phosphorus structure
Figure 22: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal
Figure 23: Schematic of germanene
Figure 24: Graphdiyne structure
Figure 25: Schematic of Graphane crystal
Figure 26: Structure of hexagonal boron nitride
Figure 27: Structure of 2D molybdenum disulfide
Figure 28: Atomic force microscopy image of a representative MoS2 thin-film transistor.
Figure 29: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge
Figure 30: Schematic of a monolayer of rhenium disulphide
Figure 31: Silicene structure
Figure 32: Monolayer silicene on a silver (111) substrate
Figure 33: Silicene transistor
Figure 34: Crystal structure for stanene
Figure 35: Atomic structure model for the 2D stanene on Bi2Te3(111)
Figure 36: Schematic of tungsten diselenide
Figure 37: A large transparent conductive graphene film (about 20 × 20 cm2) manufactured by 2D Carbon Tech. Figure 24a (right): Prototype of a mobile phone produced by 2D Carbon Tech using a graphene touch panel
Figure 38: The Tesla S's touchscreen interface
Figure 39: Graphene-enabled bendable smartphone
Figure 40: 3D printed carbon nanotube sensor
Figure 41: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte
Figure 42: Flexible transistor sheet
Figure 43: Bending durability of Ag nanowires
Figure 44: NFC computer chip
Figure 45: NFC translucent diffuser schematic
Figure 46: Covestro wearables
Figure 47: Panasonic CTN stretchable Resin Film
Figure 48: Softceptor sensor
Figure 49: BeBop Media Arm Controller
Figure 50: LG Innolink flexible textile pressure sensor
Figure 51: nanofiber conductive shirt original design (top) and current design (bottom).
Figure 52: Garment-based printable electrodes
Figure 53: Wearable gas sensor
Figure 54: Flexible, lightweight temperature sensor
Figure 55: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs.
Figure 56: Graphene medical patch
Figure 57: StretchSense Energy Harvesting Kit
Figure 58: LG Chem Hexagonal battery
Figure 59: Energy densities and specific energy of rechargeable batteries
Figure 60: Stretchable graphene supercapacitor
Figure 61: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
Figure 62: Bosch automotive touchscreen with haptic feedback
Figure 63: Canatu’s CNB™ touch sensor
Figure 64: Samsung QD-LCD TVs
Figure 65: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band.
Figure 66: Methods for integrating QDs into LCD System. (a) On-chip (b) On-edge. (c) On-surface.
Figure 67: On-edge configuration
Figure 68: QD-film integration into a standard LCD display
Figure 69: Quantum phosphor schematic in LED TV backlight
Figure 70: Global touch panel market ($ million), 2011-2018
Figure 71: Capacitive touch panel market forecast by layer structure (Ksqm)
Figure 72: Global transparent conductive film market forecast (million $)
Figure 73: Global transparent conductive film market forecast by materials type, 2015, %
Figure 74: Global transparent conductive film market forecast by materials type, 2020, %
Figure 75: QD-LCD supply chain
Figure 76: Total QD display component revenues 2013-2025 ($M), conservative and optimistic estimates.
Figure 77: Global market revenues for smart wearable devices 2014-2021, in US$.
Figure 78: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, conservative estimate
Figure 79: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, optimistic estimate
Figure 80: Potential addressable market for nanotech-enabled medical smart textiles and wearables.
Figure 81: Demand for thin film, flexible and printed batteries 2015, by market
Figure 82: Demand for thin film, flexible and printed batteries 2025, by market
Figure 83: Potential addressable market for nanotech-enabled thin film, flexible or printed batteries.
Figure 84: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates.
Figure 85: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene
Figure 86: Global market for conductive inks and pastes in printed electronics
Figure 87: Phone coated in WaterBlock submerged in water tank
Figure 88: Demo solar panels coated with nanocoatings
Figure 89: Schematic of barrier nanoparticles deposited on flexible substrates
Figure 90: Schematic of anti-fingerprint nanocoatings
Figure 91: Toray anti-fingerprint film (left) and an existing lipophilic film (right)
Figure 92: Schematic of AR coating utilizing nanoporous coating
Figure 93: Schematic of KhepriCoat®. Image credit: DSM
Figure 94: Nanocoating submerged in water

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3944280/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: The Global Market For Nanotechnology In Flexible, Stretchable And Printable Electronics And Displays
Web Address: http://www.researchandmarkets.com/reports/3944280/
Office Code: SC

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User:</td>
<td>USD 1334</td>
</tr>
</tbody>
</table>

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [ ] Mr  [ ] Mrs  [ ] Dr  [ ] Miss  [ ] Ms  [ ] Prof
First Name: ____________________________________________ Last Name: ______________________________
Email Address: * ____________________________________________
Job Title: ____________________________________________
Organisation: ____________________________________________
Address: ____________________________________________
City: ____________________________________________
Postal / Zip Code: ____________________________________________
Country: ____________________________________________
Phone Number: ____________________________________________
Fax Number: ____________________________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World