Perovskite Photovoltaics 2016-2026: Technologies, Markets, Players

Description: As one of the top ten science breakthroughs of 2013, perovskite solar cells have shown potential both in the rapid efficiency improvement (from 2.2% in 2006 to the latest record 20.1% in 2014) and in cheap material and manufacturing costs.

Perovskite solar cells have attracted tremendous attention from the likes of DSSC and OPVs with greater potential. Many companies and research institutes that focused on DSSCs and OPVs now transfer attention to perovskites with few research institutes remaining exclusively committed to OPVs and DSSCs.

Perovskite solar cells are a breath of fresh air into the emerging photovoltaic technology landscape. They have amazed with an incredibly fast efficiency improvement, going from just 2% in 2006 to over 20.1% in 2015.

Photovoltaic (PV) technologies are basically divided into two big categories: wafer-based PV (also called 1st generation PV) and thin-film cell PV.

Traditional crystalline silicon (c-Si) cells (both single crystalline silicon and multi-crystalline silicon) and gallium arsenide (GaAs) cells belong to the wafer-based PVs. Among different single-junction solar technologies, GaAs exhibits the highest efficiency, followed by c-Si cells. The latter dominates the current PV market (about 90% market share).

Thin-film cells normally absorb light 10-100 times more efficiently than silicon, allowing the use of films of just a few microns thick. Cadmium telluride (CdTe) technology has been successfully commercialized, with more than 20% cell efficiency and 17.5% module efficiency record. CdTe cells currently take about 5% of the total market. Other commercial thin-film technologies include hydrogenated amorphous silicon (a-Si:H) and copper indium gallium (di)selenide (CIGS) cells, taking approximately 2% market share each today. Copper zinc tin sulphide technology has been developed for years and it will still require some time for real commercialization.

The emerging thin-film PVs are also called 3rd generation PVs, which refer to PVs using technologies that have the potential to overcome Shockley-Queisser limit or are based on novel semiconductors. The 3rd generation PVs include DSSC, organic photovoltaic (OPV), quantum dot (QD) PV and perovskite PV. The cell efficiencies of perovskite are approaching that of commercialized 2nd generation technologies such as CdTe and CIGS. Other emerging PV technologies are still struggling with lab cell efficiencies lower than 15%.

High and rapidly improved efficiencies, as well as low potential material & processing costs are not the only advantages of perovskite solar cells. Flexibility, semi-transparency, tailored form factors, thin-film, light-weight are other value propositions of perovskite solar cells.

With so many improvements, perovskite solar cell technology is still in the early stages of commercialization compared with other mature solar technologies as there are a number of concerns remaining such as stability, toxicity of lead in the most popular perovskite materials, scaling-up, etc. Crystalline silicon PV modules have fallen from $76.67/W in 1977 to $0.4-0.5/W with fair efficiency in early 2015.

- Will perovskite solar cells be able to compete with silicon solar cells which dominate the PV market now?
- What is the status of the technology?
- What are the potential markets?
- Who is working on it?

Those questions will be answered in this report.

The report will also benchmark other photovoltaic technologies including crystalline silicon, GaAs, amorphous silicon, CdTe, CIGS, CZTS, DSSC, OPV and quantum dot PV. Cost analysis is provided for future perovskite solar cells. A 10-year market forecast is given based on different application segments. Possible fabrication methods and material choices are discussed as well.

The market forecast is provided based on the following applications:
- Smart glass
- BIPV
- Outdoor furniture
- Perovskites in tandem solar cells
- Utility
- Portable devices
- Third world/developing countries for off-grid applications
- Automotive
- Others

Contents:

1. OVERVIEW
 1.1. Overview of Research-Cell Efficiencies of Different Solar Technologies
 1.2. New Breakthrough in Solar Technology
 1.3. Perovskite Solar Cell Development Timeline

2. TECHNOLOGY BENCHMARKING OF DIFFERENT PV TECHNOLOGIES
 2.1. Photovoltaic Technology Classification by Generation
 2.2. Photovoltaic Technology Classification by Material
 2.3. Silicon Solar Technologies
 2.4. Golden Triangle of Solar Cells
 2.5. Technology Development Roadmap
 2.6. Efficiencies of Different Solar Technologies: Cells and Modules
 2.7. Life Cycle of PV and Energy Payback Times
 2.8. Price of Different PV Technologies
 2.9. Solar Device Structures of Different PV Technologies
 2.10. Open-Circuit Voltage Versus Optical Bandgap
 2.11. Maximum Photo Energy Utilisation
 2.12. Metrics Comparison of Different PV Technologies
 2.13. Crystalline Silicon
 2.14. Gallium Arsenide
 2.15. Hydrogenated Amorphous Silicon
 2.16. Cadmium Telluride
 2.17. Copper Indium Gallium (Di)selenide
 2.18. Copper Zinc Tin Sulphide
 2.19. Organic Photovoltaic
 2.20. Quantum Dot Photovoltaic
 2.21. Dye-Sensitized Solar Cell
 2.22. Perovskite

3. COST ANALYSIS
 3.2. Cost of Generating Electricity
 3.3. PV Module Prediction based on Learning Curve
 3.4. Typical PV System Prices in Selected Countries
 3.5. Total Energy Generation Cost of Perovskite PVs
 3.6. Perovskite Module Cost Estimation
 3.7. Future Perovskite PV System Cost Breakdown
 3.8. Future Perovskite PV System Cost Breakdown assumption
 3.9. Breakdown of Future P-type Silicon Tandem System with Perovskite Stack

4. COMMERCIAL OPPORTUNITIES AND MARKET FORECAST
 4.1. Summary of Commercial Opportunity
 4.2. Application Roadmap of Perovskite Photovoltaics
 4.3. Smart Glass
 4.4. Building Integrated Photovoltaics
 4.5. Utility Market
 4.6. Outdoor Furniture
 4.7. Automotive
 4.8. Third World Application
 4.9. Portable Electronics
 4.10. Assumptions & Analysis
4.11. Market Forecast in US$ Million
4.12. Market Forecast Considering the Whole Module Value
4.13. Market Segment by Value in 2026

5. BACKGROUND OF PEROVSKITE SOLAR CELLS
5.1. Solar Spectrum
5.2. Calculating Efficiency
5.3. What Is Perovskite?
5.4. Perovskite Structure
5.5. Perovskite Solar Cells-Selling Points
5.6. Value Propositions
5.7. Working Principle
5.8. Barriers & Challenges
5.9. Stability of Perovskite Solar Cells
5.10. Mixture Halide Perovskite Is More Stable
5.11. Hysteresis Behaviour in the Current-Voltage Curves
5.12. Tandem Solar Cell: Perovskite Stack Can Be Printed on top of Existing Silicon PV Cells
5.13. Efficiency versus Transmission
5.14. Progress in PCEs of DSSC
5.15. Perovskite Solar Cell Evolution 1
5.16. Perovskite Solar Cell Evolution 2

6. ARCHITECTURE AND FABRICATION
6.1. Classification of Perovskite Solar Cells
6.2. Structures/Architectures of Perovskite Solar Cells
6.3. Production of silicon and silicon wafers
6.4. Deposition of Perovskite Films
6.5. Engineering the Deposition Process
6.6. Processing Planar Heterojunction without TiO2
6.7. Deposition Processes for Perovskite Films
6.8. One Step Precursor Deposition
6.9. Sequential Deposition Process
6.10. Two Step Spin-Coating Deposition
6.11. Spray Coating Deposition
6.12. Slot-Die Coating Process
6.13. Dual Source Vacuum Deposition
6.14. Sequential Vapour Deposition
6.15. Vapour-Assisted Solution Process

7. MATERIAL OPTIONS
7.1. Material Combinations
7.2. Organic Ions in Perovskite
7.3. Halogen Ions in Perovskite
7.4. Bandgap Tuning
7.5. Possible Material Improvement
7.6. Interface Layers
7.7. Polymer HTMs
7.8. Small Molecule HTMs Based on Phenylamine Derivatives
7.9. Small Molecule HTMs without Phenylamine Derivatives

8. PLAYER PROFILES
8.1. Printed photovoltaic thin-film module of Crystalsol
8.2. Roadmap of Perovskite Photovoltaics in Oxford PV
8.3. Partners of Saule Technologies
8.4. 450 mm x 650 mm Prototype from Weihua Solar

9. COMPANIES CURRENTLY WORKING ON PEROVSKITES
9.1. CSIRO
9.2. Dyesol
9.3. Fraunhofer ISE
9.4. FrontMaterials
9.5. Oxford Photovoltaics
9.6. Saule Technologies
9.7. Xiamen Weihua Solar Co., Ltd.

10. COMPANIES WORKING ON OTHER EMERGING PVS
10.1. Alta Devices
10.2. Armor
10.3. Belectric
10.4. Crayon Nano AS
10.5. Crystalsol GmbH
10.6. Disa Solar
10.7. Eight19 Ltd
10.8. Exeger
10.9. Flexink
10.10. G24 Power Ltd
10.11. Heliatek GmbH
10.12. NanoGram Corp
10.13. National Research Council Canada
10.14. New Energy Technologies Inc
10.15. Polyera Corporation
10.16. Raynergy Tek Incorporation
10.17. Solaronix
10.18. SolarPrint Ltd
10.19. Sumitomo Chemical and CDT
10.20. Ubiquitous Energy Inc
10.21. VTT Technical Research Centre of Finland

11. ABBREVIATIONS

Ordering:

Order Online - http://www.researchandmarkets.com/reports/3985713/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Perovskite Photovoltaics 2016-2026: Technologies, Markets, Players
Web Address: http://www.researchandmarkets.com/reports/3985713/
Office Code: SC2GYZAI

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format Type</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users</td>
<td>□</td>
<td>USD 5489</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users</td>
<td>□</td>
<td>USD 5790 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users</td>
<td>□</td>
<td>USD 8219</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users</td>
<td>□</td>
<td>USD 8520 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:
Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number: 833 130 83
Sort code: 98-53-30
Swift code: ULSBIE2D
IBAN number: IE78ULSB98533083313083
Bank Address: Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp