Autonomous Vehicles Land, Water, Air 2017-2037

Description: This unique commercially oriented report has detailed market and technical analysis with many new infograms, conference slides, roadmaps and forecasts. It is based on global research by PhD level multi-lingual analysts in 2016 with frequent updates. The Executive Summary and Conclusions is insightful, detailed yet easily assimilated. An introduction gives an overview of the technologies and a chapter analyses important applications followed by a chapter on general Level 5 autonomy technology then one specifically on software and processor technology for them. A chapter covers LIDAR and associated technologies and a final chapter scopes autonomous energy independent vehicles.

Autonomous vehicles need no pilot, or even one in reserve, for at least some of the time. Many are unmanned mobile robots. Their time has come as they prowl everywhere from the ocean depths to the upper atmosphere and outer space. They are creating billion dollar businesses such as aircraft and airships aloft for five to ten years on sunshine alone carrying out surveillance or beaming the internet to the 4.5 billion people who lack it. Yes, independence of energy and electrification are closely related to this. Many land, water and airborne autonomous vehicles are already energy independent too, making the autonomy task easier. Most autonomous vehicles will be electric so the subject is also closely related to the electric vehicle scene.

This report looks at the whole subject in a critical manner revealing how the electric vehicle business at over $0.7 trillion in 2017 will include many new autonomous forms creating one billion dollar businesses for both the vehicles and their components. On the other hand, it shows how part of this story is the arrival of peak internal combustion engine, peak lead acid battery and peak car within 15 years causing mayhem in the industries involved.

We note that suppliers plan to sell a lot of autonomous cars to private individuals yet 70% of us will live in cities soon where cars, autonomous or not, will be banned or severely dissuaded from entering. We question whether the necessary price increases can stick for private cars but note a host of applications where premium pricing will be no problem at all, such are the benefits.

The report reveals the many very different reasons for adoption of autonomous vehicles in commercial, industrial, military, marine, aerospace and other applications and the very different degree of difficulty in achieving what is needed. Impediments are inspected, from insurance, legal, privacy and multiple road use issues to cost reducing hardware and software and making it more capable. Will the biomimetic approach of minimal sensors and superb sensor fusion software and data management prevail or are we headed for a burgeoning amount of hardware of increasing sophistication?

Which types of electric vehicle land water and air are most promising for autonomy and when? What are the lessons of combining autonomy of navigation, task and energy such as electricity from sun, wind, waves, tide, thermals? Which developers are showing most promise? Where is the money being spent? Which projects will end in tears and where are things on the hype curve today? Why are search and rescue and agriculture such promising applications?

What robot vehicles form a good escape route for car makers seeing car sales collapse? The programmer of the autonomous vehicle may make it act and react in the interests of society as a whole, for example killing the minimum number of people in an accident rather than acting in the interests of any passengers. Which is the right approach? This report addresses the issues with a balanced appraisal of it all.

Contents:

1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Autonomy of navigation, task and power
 1.2. Levels of autonomy
 1.3. Why have autonomy?
 1.3.1. Aerospace
 1.3.2. Agriculture
 1.3.3. Car - taxi - bus
 1.3.4. Industrial shipping
1.3.5. Search and rescue
1.3.6. Underwater
1.4. Many autonomous car trials
1.4.1. First-ever public trial of a robo-taxi service
1.5. Autonomy hits sales of cars but not of other vehicles
1.5.1. Increasing hostility to private cars in cities whether autonomous or not
1.6. Convergence of technologies and new challenges
1.6.1. Overview
1.6.2. Legal issues BMW view
1.6.3. Operational challenges
1.6.4. Technical challenges
1.6.5. Ethical challenges
1.6.6. Insurance challenges
1.7. Hype curve for autonomy today
1.8. Strength of autonomy purchase propositions
1.9. Terminology
1.10. Autonomy of navigation, task and power: examples
1.10.1. Example: Vinerobot micro EV Europe
1.10.2. MARS boat UK
1.10.3. Seaglider AUV boat USA
1.11. Technologies of EIVs
1.11.1. EIV technology past, present and concept on land
1.11.2. EIVs technology past, present and concept on and under water
1.11.3. EIV technology past, present and concept in the air
1.11.4. Space exploration
1.12. Technology of autonomy
1.12.1. Land, water, air
1.12.2. Typical toolkit for autonomy of on-road vehicles
1.13. The current players in on-road autonomy
1.14. Market forecasts
1.14.1. EV and 48V mild hybrid global forecasts number K 2017-2027
1.14.2. EV and 48V mild hybrid global forecasts $ billion 2017-2027
1.14.3. EV Market Value US$ Billion 2017
1.14.4. EV Market Value US$ Billion 2027
1.14.5. On-road Level 3-5 autonomous vehicles forecasts
1.14.6. Relative importance of powertrain and autonomy hardware markets 2017-2037
1.14.7. Software in on-road applications 2014-2030
1.14.8. AMoD Demand for autonomous cars 2016-2035
1.14.9. US on-road addressable market
1.14.10. Ten-year market forecasts for all agricultural robots and drones segmented by type and/or function
1.15. Autonomy roadmap
1.15.1. Autonomy roadmap 2018-2020
1.15.2. Autonomy roadmap 2023-2040
1.15.3. Sensor and allied technology roadmap
1.15.4. EIV technology roadmap 2017-2036
1.16. Mining
1.17. Consolidation of hardware suppliers

2. INTRODUCTION
2.1. Definition and building blocks
2.2. Progress towards full autonomy
2.2.1. Simplifying the environment
2.3. Connectivity and automation reduce fuel consumption
2.4. Level 5 autonomous vehicles
2.5. Autonomous vehicles are best when they are electric
2.6. Benefits of autonomy
2.7. Huge impact of autonomous car as bus is calculated in 2017

3. SOME IMPORTANT APPLICATIONAL SECTORS
3.1. Agricultural Robots and Drones
3.1.1. Ultra precision farming
3.1.2. Transition to swarms of slow, cheap, unmanned agricultural robots
3.1.3. Market and technology readiness by agricultural activity
3.2. Autonomous ships
3.3. Autonomous Underwater Vehicles AUV
3.3.1. Why AUVs are necessary
3.3.2. Features
3.3.3. Examples: Seastick
3.3.4. Urashima AUV Japan
3.4 Autonomous inland boats: Roboat project

4. LEVEL 5 AUTONOMOUS VEHICLE SYSTEM TECHNOLOGY
4.1. Degree of difficulty
4.2. Autonomous vehicles in warehousing and logistics
4.3. Autonomy technology overview: land, water, air
4.3.1. Examples of technologies
4.3.2. Five basic building blocks.
4.4. Hardware toolkit on land

5. SOFTWARE AND PROCESSOR TECHNOLOGY FOR AUTONOMY
5.1. Mission centric advances
5.1.1. Airware
5.1.2. Skydio
5.1.3. Gateway
5.2. Autonomous vehicle platform: functional diagram for sensing and control
5.3. Processing for fully autonomous vehicles
5.3.1. Overview
5.3.2. Capabilities/limitations
5.3.3. Beyond microcontrollers
5.3.4. System on a Chip (SoC)
5.3.5. Sensor fusion
5.3.6. MCU architectures
5.3.7. Consolidation on the ARM architecture
5.3.8. Open source hardware
5.3.9. Moore's Law for processing
5.3.10. Prices equilibrating
5.3.11. Trends
5.3.12. SBC market

6. LIDAR FOR AUTONOMOUS VEHICLES
6.1. LIDAR for autonomous vehicles

7. AUTONOMOUS ENERGY INDEPENDENT VEHICLES EIV; AEROSPACE, LAND, WATER
7.1. End game is energy independent pure electric not dynamic charging
7.2. Electric vehicle powertrain evolution: typical figures expected for cars
7.3. Key enabling technologies by powertrain
7.4. Com-BAT surveillance bat
7.5. Solar Ship EIV helium inflatable fixed wing aircraft Canada autonomous, sun alone
7.6. Northrop Grumman surveillance airship up for 10 years
7.7. Mitre DARPA airship USA
7.8. Titan Aerospace UAV USA
7.9. Solar Eagle UAV USA
7.10. Self assembling autonomous unmanned EIV aircraft Aurora Flight Sciences
7.11. Charge autonomous delivery truck UK
7.14. Driverless-vehicle options now include scooters November 2016

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3986639/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Autonomous Vehicles Land, Water, Air 2017-2037</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3986639/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SC2GAJLG</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Product Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF)</td>
<td>USD 5010</td>
</tr>
<tr>
<td>1 - 5 Users:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USD 5310 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td></td>
<td>USD 5310 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td></td>
<td>USD 7818 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td></td>
<td>USD 7818 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td></td>
<td>1 - 10 Users:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>____________________________</td>
<td>Last Name:</td>
<td>____________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td>__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: ________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp