Internet of Things (IoT) 2017-2027

Description: Researched in late 2016 with ongoing updates, this unique report on the Internet of Things IoT has over 140 data filled pages including over 150 images. It is intended to assist investors, participants and intending participants in the value chain including developers and academics, interested government officials and users seeking the truth based on new investigation. The focus is on identifying genuine capabilities and needs from a commercial point of view.

The pages are mostly in the form of easily assimilated infograms, roadmaps and forecasts. The report is about nodes that sense, learn, gather data and initiate reports and action using IP addressed sensor nodes to process and send information. It is realistic and analytical not evangelical. We do not repeat the mantra about tens of billions of nodes being deployed in only a few years. The many analysts sticking to such euphoria ignore the fact that, contrary to their expectation, very little IoT was deployed in 2016. They are “bubble pushing” with their forecasts, predicting ever steeper takeoff, now a physical impossibility.

However, our ongoing global travel, interviews, conferences and research by our multi-lingual PhD level analysts located across the world does lead us to believe that a large market will eventually emerge but not primarily for nodes, where our price sensitivity analysis and experimentation shows commoditisation rapidly arriving. Indeed, as Cisco correctly notes, it is a pre-requisite for success.

The money will lie in the systems, software and support examined in this study, though we also look closely at node design to reveal all the impediments to progress as well as the things coming right and the potential for enhanced functionality and payback. For example, the ongoing major breaches of internet security with small connected devices sit awkwardly with system and software manufacturers’ claims year after year that they have cracked the problem.

The most primitive IoT nodes have an actuator and no sensor as with connected Raspberry Pi single board computers retrofitted to air conditioning for remote operation. We have talked to the CEO of Raspberry Pi, to systems and node suppliers, academics and many others and assessed their replies.

IoT centres around nodes collaborating for the benefit of humans without human intervention at the time. It does not include the Internet of People which is a renaming of the world of connected personal electronics operated by humans: this has completely different characteristics and it is cynical to conflate it with IoT, just as shovelling in RFID, all M2M, ZigBee and so on is unhelpful.

Nevertheless, we show how IoT nodes can be on people and quantify the appropriate part of wearables market because is relevant. The report explains further with a host of examples and options, even giving forecasts for agricultural robots following several respondents seeing agriculture as an important potential IoT market.

As IoT moves to higher volumes - billions rather than millions yearly - the nodes will typically not be hard wired: wireless nodes will have battery power and increasingly energy harvesting EH on-board because it will be impractical to change batteries. We consider the unsolved problem of suitable EH and the possibilities for solving it.

The largest potential applications will be multi-sensor so, for many reasons, component count will increase making cost reduction more difficult. We look at expenditure on IoT enabling technology which currently runs to billions of dollars yearly, mainly coming from governments and aspiring suppliers. However, we reveal how most of those reporting these and other IoT figures are puffing their data with things that may never be a part of the IoT scene such as sensor research in general.

Expenditure on buying and installing actual IoT networks is much more modest, contrary to heroic forecasts made by most analysts and manufacturers in the past. The author was disbelieving about the huge projections by others for the last four years and we have been proved right so far. Nevertheless, even our node forecasts have now been reduced in the light of what has happened, though our systems figures have been increased. It adds up to $20 billion in actual networks including nodes in ten years from now and rapid progress after that. See the number and dollar breakdown by application. Learn which players do what. What are now looking to be the important IoT applications and why? What are the important open source
options at node and system level? What has come right lately that will boost IoT and what is still problematic? These and many other questions are answered.

Contents:

1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Definitions and scope
 1.2. A natural next stage
 1.3. IoT infrastructure
 1.4. IoT contrasted with IoP
 1.5. IoT value chain and bias vs IoP
 1.6. Potential applications examples
 1.6.1. Losing privacy, committing crime, solving crime
 1.7. Examples of IoT opportunities and suppliers
 1.8. Hype and nonsense
 1.9. The bigger vision
 1.10. But wider deployment means compromises and new challenges
 1.11. Some megatrends favour IoT: others do not
 1.12. Impediments to IoT
 1.13. System and software issues
 1.13.1. Severe security breaches continue
 1.13.2. Choosing a low power WAN
 1.13.3. Sensor fusion
 1.13.4. Artificial intelligence: deep learning
 1.13.5. Lower power ICs, more frugal node activation
 1.14. Hardware
 1.14.1. IoT nodes: basics
 1.14.2. System on a Chip (SoC)
 1.14.3. Microcontroller units (MCUs)
 1.14.4. Anatomy of a generic device
 1.14.5. Compute power
 1.14.6. How are microcontrollers used?
 1.14.7. Capabilities, limitations, application
 1.14.8. Beyond microcontrollers
 1.14.10. Internet of Things nodes
 1.14.11. New IoT formats: RFMOD’s BeanIoT
 1.14.12. IoT node with up to ten sensors and battery power: cost structure excluding batteries
 1.14.14. Wi-Fi harvesting
 1.15. Investment in IoT development 2014-2020
 1.16. Industry standards ferment and SIGfox, NBIOT etc contention
 1.17. Market forecasts 2017-2027
 1.17.1. Internet of Things forecasts 2017-2027 - numbers (billions)
 1.17.2. Internet of Things forecasts 2017-2027 - unit price (US$)
 1.17.3. Internet of Things forecasts 2017-2027 - node market value ex-factory (US$ billions)
 1.17.4. IoT systems globally 2017-2027 (US$ billions)
 1.17.5. Allied market forecasts and data
 1.17.6. EV and 48V mild hybrid global forecasts number K 2017-2027
 1.17.7. EV and 48V mild hybrid global forecasts $ billion 2017-2027
 1.17.8. On-road Level 4/5 autonomous vehicles forecasts
 1.17.9. Ten-year market forecasts for all agricultural robots and drones segmented by type and/or function
 1.17.10. Ten-year market forecasts for agricultural robots and drones segmented by type and/or function
 1.17.11. Market for IoT wearable devices: medical

2. INTRODUCTION
 2.1. What is IoT?
 2.2. Example of possible applications: wearable IoT
 2.3. The IoT dream
 2.4. Many rename existing things without IP addresses as IoT: this is unhelpful
 2.5. Heroic forecasts retained despite a quiet 2016
 2.6. Why is IoT gaining attention?
 2.6.1. Primary driver
 2.6.2. New technology
2.6.3. Oil and gas
2.6.4. Manufacturing etc. Bosch view
2.6.5. Utilities
2.6.6. Transportation
2.6.7. Automotive
2.6.8. Retail
2.6.9. Local government
2.6.10. Smart home
2.6.11. Bottom line
2.7. Automotive IoT in more detail
2.7.1. Introduction
2.7.2. Sensors: IoT potential for insight, safety, performance
2.7.3. Automobiles mapping pollution
2.7.4. Automobile and smart home
2.7.5. Cars as an IoT subscription service
2.7.6. Some trends resulting
2.7.7. Recent Acquisitions and mergers in automotive IoT
2.8. Impediments
2.9. Disagreements and uncertainty
2.10. System and node operational improvements
2.10.1. Overview of advances proceeding
2.10.2. Lower power ICs and different design approach facilitate low power EH adoption
2.10.3. Node to Node or Big Data?

3. CORE MICROCONTROLLER UNIT MCU TECHNOLOGIES
3.1. Manufacture
3.2. Optimising power consumption
3.3. Low power battery backup
3.4. MCU architectures
3.5. MCU components: memory
3.6. MCU components: IO
3.7. MCU co-processors: DSPs
3.8. MCU co-processors: FPGAs
3.9. MCU co-processors: PLDs and CPLDs
3.10. MCU software: Operating Systems
3.11. MCU software: programming languages

4. ADJACENT SYSTEM AND SENSOR TECHNOLOGIES
4.1. Sensors
4.1.1. Inertial measurement units (IMUs)
4.1.2. Global Positioning System (GPS)
4.1.3. Depth cameras
4.2. Communications

5. HARDWARE PLAYERS
5.1. Renesas Electronics
5.2. NXP+Freescale
5.3. Microchip+Atmel
5.4. Atmel
5.5. ST Microelectronics
5.6. Infineon Technologies
5.7. Texas Instruments (TI)
5.8. Cypress/Spansion
5.9. Samsung
5.10. Intel
5.11. Digispark
5.12. Arduino/Genuino
5.13. Apple
5.14. Google
5.15. Amazon
5.16. Raspberry Pi Foundation
5.17. Beagleboard
5.18. Some more MCU prototyping boards...
5.19. And many more SBCs...

6. SYSTEM AND HARDWARE TRENDS
6.1. Benchmarking Clarifies the Future of Internet of Things
6.2. Wide Area network choice - LoRaWAN and LoRa Alliance
6.3. eRIC
6.4. MCU architecture trends: ARM
6.5. Open source hardware and systems
6.6. Moore's Law
6.7. Prices equilibrating
6.8. Other MCU trends

7. APPENDIX: REPORT FROM THE IBM-ENOCEAN ALLIANCE MEETING

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3987627/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Internet of Things (IoT) 2017-2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3987627/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SC2GXZNU</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

- **Electronic (PDF)**
 - 1 - 5 Users: USD 5010
- **Electronic and Hard Copy (PDF)**
 - 1 - 5 Users: USD 5310 + USD 56 Shipping/Handling
- **Electronic (PDF)**
 - 1 - 10 Users: USD 7517
- **Electronic and Hard Copy (PDF)**
 - 1 - 10 Users: USD 7818 + USD 56 Shipping/Handling

* Shipping/Handling is only charged once per order.

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td>Last Name:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Email Address: *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organisation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postal / Zip Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fax Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World