Supercapacitor Technologies and Markets 2016-2026

Description: Supercapacitors are an emerging energy storage technology that will take a key role in the future of energy systems. Whilst lithium-ion batteries are increasingly capturing the market of other battery technologies, they will never be able to compete with supercapacitor technology in terms of power and number of cycles.

This technology will supplement and, in some cases, replace the role of incumbent energy storage technologies such as lithium-ion batteries, addressing the weakest points of battery technologies such as low power, limited number of cycles and low performance at low temperatures. Batteries and supercapacitors combined offer the best solution for many energy systems from the automotive sector to grid energy storage, allowing batteries not only to perform better but also to extend their lifetime whilst reducing both CAPEX and OPEX.

With steady progress, supercapacitors are getting traction in these mainstream application markets such as the automotive and rail sectors and opening new possibilities in emerging sectors such as grid energy storage.

Energy systems at all levels are increasingly becoming systems of variable power demand, this is true at all levels, from consumer electronic to electricity grids. Indeed, new electronic devices, from smart phones to sensors have variable power demands because they have increasingly different functions with different power requirements. Consumers are begging for a fast charging solution for their electronic devices. As electricity grids integrate more intermittent renewable energy sources the need for high power energy storage becomes more evident.

Finally batteries, rely on chemical reactions that make them respond slowly at low temperatures or not respond at all. Therefore in many cases batteries will not satisfy fully the power requirements of all these applications in future energy systems, if they do they will do it by oversizing their capacity at an extra cost and/or exposing batteries to high power demands which will eventually reduce their lifetime.

It is for all these reasons that a new market for high power energy storage is being open. It is in this sector where supercapacitors have a key role.

The author estimates that the high-power energy storage market is expected to grow almost ten-fold to $2 billion a year by 2026 up from about $240 million currently, Supercapacitors could capture about $800 million to $1 billion of that potential market opportunity.

The supercapacitor industry is carving its place in the future of energy systems. Manufacturers based in the USA, Asia and recently Europe are set to address market needs in the automotive sector, aerospace, public transport and rail and the future smart grids and many more.

This report provides a ten year forecast for supercapacitors in the context of the highly complex dynamics of the emergence of energy storage as a key enabling technology in the 21st century and the deep structural changes of the energy sector. We provide an update of the most recent trends in the supercapacitor industry, providing also an overview of the recent commercial developments of the key supercapacitor manufacturers and the developments in both supercapacitor and hybrid supercapacitor technologies.

Important recent market trends included in this report are:

- The role of supercapacitor technologies in the future of sustainable energy systems from electric vehicles to renewable energy and electricity grids.
- The current state of the industry in terms of market growth and recent commercial developments.
- The state of the supercapacitor market in China and how the current policy changes are affecting the industry.
- The potential role of Chinese supercapacitor manufacturers in the future competitive landscape of the sector.
- The emerging new players in Europe.
- The new opportunities for growth inside and outside China.
Important recent technology trends included in this report:

- The role of aqueous electrolyte based supercapacitor technology and the implications for the sector.
- How supercapacitor products are improving performance reaching in order to comply with end user requirements.
- Competitor technologies for supercapacitor in different sectors.

Contents:

1. EXECUTIVE SUMMARY AND MARKET FORECAST
 1.1.1. Focus of this report and primary trends

2. STATE OF THE SUPERCAPACITOR MARKET 2015
 2.1.1. Capacitor and Supercapacitor players and estimated revenues in 2015-16.
 2.1.2. Competitive Landscape
 2.1.3. Market forecast (>100 Farad market)
 2.1.4. Technology roadmap
 2.1.5. Pick of the news in 2015-16
 2.1.6. Company performance 2015 vs 2014
 2.1.7. Company performance YTD 2015 vs 2014
 2.1.8. European Companies developments
 2.1.9. The great shake out in China
 2.1.10. Chinese supercapacitor market
 2.1.11. Maxwell Technologies recent news June 15th 2016
 2.1.12. Maxwell Tech 15 Jun 2016 shareholders meeting announcements
 2.1.14. Challenges for SC in automotive
 2.1.15. Response from the industry
 2.1.16. Nippon Chemi-Con development plan
 2.1.17. Competitive landscape
 2.1.18. Supercapacitors in Automotive Sector
 2.1.19. SC progress in Automotive up to date
 2.1.20. Emergency backup when the electrics fail: more likely to work than a battery
 2.1.21. Wind industry growth in 2015
 2.1.22. Top wind turbine companies and which are adopting supercapacitors in pitch control
 2.2. Supercapacitors in Grid applications
 2.2.1. The role of SC in grid
 2.2.2. Grid Energy Storage
 2.2.3. Uses of energy storage - UCAP and HESS
 2.2.4. Hybrid Energy Storage Systems - Performance Benefits
 2.2.5. Duke Energy Rankin Substation: PV Intermittency Smoothing + Load Shifting
 2.2.6. Smoothing Wind Farm Power Output
 2.2.7. Ireland Microgrid Test Bed
 2.2.8. 66 manufacturers and putative manufacturers of supercapacitors/ superbatteries % by continent
 2.2.9. Market Development - Number of Players
 2.3. Technology
 2.3.1. What is a supercapacitor?
 2.3.2. Relative performance in Energy and Power of different energy storage technologies
 2.3.3. Battery cycle life
 2.3.4. Batteries and Supercapacitors
 2.3.5. Benefits of SC and Battery hybrid systems
 2.3.6. Self Discharge
 2.3.7. Charge and discharge behavior Batteries and Supercapacitors
 2.3.8. Types of capacitor
 2.3.9. Principles - capacitance
 2.3.10. Principles - supercapacitance
 2.3.11. Principles - energy and power in supercapacitors
 2.3.12. Pseudo capacitance or faradic behavior
 2.4. Supercapacitor components and their role in performance
 2.4.1. Supercapacitors components
 2.4.2. Electrode materials - carbon, binders and additives
 2.4.3. Electrode materials - Carbon
 2.4.4. Pore size matters for capacitance
 2.4.5. Increase Surface Area - Activation of Carbon
2.4.6. Increasing performance - Graphene
2.4.7. Ideal graphene has remarkable properties
2.4.8. Graphene and precursor materials
2.4.9. Surface utilisation challenge
2.4.10. Graphene Oxide (GO) reduction
2.4.11. Graphene/Graphite/CNT materials
2.4.12. Vertically Oriented Graphene Nanosheets
2.4.13. Supercapacitor performance
2.4.15. Companies setting targets to increase performance - Graphene
2.4.16. Increasing performance Graphene/CNT
2.4.17. Increasing performance Graphene/CNT
2.4.18. Example Increasing performance - Carbon Nanotubes/ Carbon
2.4.19. Carbon nanotubes CNT
2.4.20. Electrolytes
2.4.21. Increasing performance the role of electrolytes
2.4.22. Organic vs aqueous electrolytes
2.4.23. Safety - the Japanese regulation: a situation to consider
2.4.24. Electrolytes used by manufacturer
2.4.25. Increasing performance of aqueous electrolyte SC
2.4.26. Aqueous based electrolyte supercapacitors match performance of organic electrolyte supercapacitors
2.5. Environmentally friendlier materials in Supercapacitors while keeping performance
2.5.1. Trends in electrolytes
2.5.2. Increasing performance of aqueous electrolyte SC
2.5.3. New trend in electrolytes... Ionic Liquids
2.5.4. The role of binders in SC
2.5.5. Natural Cellulose in Ionic Liquids Electrode Manufacturing process

3. SUPERCAPACITORS MAIN COMPETITION: LITHIUM TITANATE BATTERIES
3.1.1. Battery company: Toshiba
3.1.2. Features of Toshiba's SCIB
3.1.3. Production plant for Toshiba's SCIB
3.1.4. Toshiba R&D activities
3.1.5. Small footprint Lithium titanate batteries by Murata
3.1.6. Graphene - LTO anode Improvement
3.2. Hybrid Supercapacitors, Supercabatteries or Asymmetric Supercapacitors
3.2.1. Nomenclature
3.2.2. Supercapacitors and Hybrid supercap.
3.2.3. Competitive landscape
3.2.4. Nano hybrid capacitor (NHC)
3.2.5. Supercapacitors evolution
3.2.6. Ultrabattery
3.2.7. Hybrid SC-Supercabatteries can use Aqueous or non aqueous electrolytes
3.2.8. European perspective on supply chain in supercapacitors
3.2.9. Why do SC manufacturers bother in preparing the active material?
3.2.10. Manufacturing development trends
3.3. Supercapacitors Cost Structure
3.3.1. Cost Structure Supercapacitors
3.3.2. Supercapacitors cost reduction is far quicker than lithium ion batteries
3.3.3. How to price energy/power devices?
3.3.4. Hybrid ESS = SC + Battery

4. MARKETS FOR SUPERCAPACITORS
4.1.1. Three main market segments
4.1.2. Market segmentation by Farad/cell
4.1.3. Why SC in Energy System?
4.2. Supercapacitors in Electronics
4.2.1. A role for supercapacitors In Smart and Portable Devices
4.2.2. Key enabling technologies and systems
4.2.3. Why Wireless Sensor Networks?
4.2.4. WSN and IoT
4.2.5. Critical infrastructure monitoring
4.2.6. Wireless Sensor Node
4.2.7. Why SC in Wireless Sensor Networks?
4.2.8. WSN operational profile
4.2.9. Why SC in Wireless Sensor Networks?
4.2.10. And that has an impact in power demand profiles...
4.2.11. They are getting thinner
4.2.12. Why Micro-SC in WSN and other consumer electronics?
4.2.13. Energy harvesting with SC
4.2.14. Microsupercapacitors
4.2.15. Manufacturing techniques are key to low cost
4.3. Supercapacitors in Transportation
4.3.1. Supercapacitors are replacing some batteries - expensive and little energy stored but...
4.3.2. Supercapacitors have a role in each stage of powertrain electrification
4.3.3. Start stop Systems - Micro hybrids
4.3.4. Energy Recovery - Mild Hybrid
4.3.5. Power at the point of demand
4.3.6. Electronic Controlled Brake
4.3.7. Mazda Japan and Bollore Pininfarina France/Italy
4.3.8. Supercapacitor replaces battery across fuel cell for fast charge/discharge
4.3.9. Bombardier light rail and others use supercapacitor energy harvesting
4.3.10. Rail: two ways of applying supercapacitors
4.3.11. Longer life, more reliable, better response. Completely replaces battery in pure electric Sinautec bus
4.3.12. Supercapacitors assist fast charging in ABB's TOSA bus charging system in Geneva
4.3.13. Fast charge-discharge
4.3.14. Hybrid Bus - Series Hybrid
4.3.15. Hybrid Bus - Parallel Hybrid
4.3.16. Modular flexible hybrid drives
4.3.17. Maxwell Technologies Engine Start Module
4.3.18. Idling is a problem
4.3.19. ESM Value proposition
4.3.20. Two markets default option and retrofit (after market)
4.3.21. Supercapacitors in heavy trucks
4.3.22. SC market in retrofit or aftersales
4.3.23. Sports cars use supercapacitors
4.3.24. The result - the Toyota Yaris Hybrid-R
4.3.25. Supercapacitors applications in Aerospace
4.3.27. Supercapacitors in Industrial applications
4.3.28. Emergency backup when the electrics fail: more likely to work than a battery
4.3.29. SC in Lifting operations + Energy Recovery from Short Trips
4.3.30. Forklifts
4.3.31. Super Capacitor Heavy-duty Port Towing Vehicle produced by Aowei Certified by MIIT
4.3.32. Supercapacitors in Port Cranes
4.3.33. Supercapacitors in Industrial Applications
4.3.34. Building Elevators
4.3.35. Smart Metering - AMR
4.3.36. Handheld products - Fast Charging
4.5. Supercapacitors in Grid applications
4.5.1. Grid Energy Storage
4.5.2. The role of SC in grid
4.5.3. Challenges for SC in Automotive
4.5.4. Response from the industry
4.5.5. Nippon Chemi-Con development plan
4.5.6. Existing Automotive Applications details
4.5.7. Existing non-automotive applications
4.5.8. Medium term applications
4.5.9. Supercapacitor in the automotive sector
4.5.10. OEM's point of view
4.5.11. Supercapacitors in Automotive Sector
4.5.12. SC progress in Automotive up to date
4.5.13. Supercapacitors in the future - Structural Energy Storage
Ordering:

Order Online - http://www.researchandmarkets.com/reports/3987663/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Supercapacitor Technologies and Markets 2016-2026
Web Address: http://www.researchandmarkets.com/reports/3987663/
Office Code: SC2GQEJ1

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users</td>
<td></td>
<td>USD 4987</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users</td>
<td></td>
<td>USD 5288 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users</td>
<td></td>
<td>USD 7484</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users</td>
<td></td>
<td>USD 7785 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __ Last Name: __
Email Address: * __
Job Title: __
Organisation: __
Address: __
City: __
Postal / Zip Code: __
Country: __
Phone Number: __
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World