Description: Since the mobile era, touch screens have been at the core of our user interface with electronic devices. However, as the technology behind touch interfaces begins to saturate, many players now look beyond touch to the future of user interfaces. Whilst advanced solutions including voice and gesture detection, right through to perceptive computing are suggested, many suppliers are looking for the best ways to improve the existing platform. It is possible to literally add an additional dimension to touch interfaces by adding force sensing. This trend has been strongly visible from various market leaders throughout 2015 and 2016. This report characterises and forecasts this change, including its relevance throughout the touch, display and electronics value chains.

Force sensors themselves are certainly nothing new, and even their use within user interfaces dates back over 40 years where they were first used in musical instrument toys. In fact, force sensors in musical instruments including electronic drum kits, keyboards and more has been the most mature market, and until 2015, one of the largest (when focusing specifically on user interfaces at least). However, with many high profile consumer electronics products containing force sensing interfaces launched throughout 2015 (most notably from Apple, in their smartwatch, laptop and smartphone products), this has quickly dominated the market. As such, the user interface landscape is undergoing a period of significant change, with force sensing as a prominent early step.

With activities of over 30 companies documented and compared, this report provides the most concise, relevant and thorough coverage of the trend towards force sensing in user interfaces. The report also provides a detailed discussion of each of the key technologies involved, including the basic principles, value chain implications (from materials through to product) and example players in each case. The report provides detailed market forecasts, starting from historic data for 2015, and forecasting through to 2027 by application/product type and by technology.

The report expects capacitive force sensing to remain dominant, with advantages over resistive options and immaturity in more emerging techniques such as piezoelectric polymers or dielectric elastomers allowing them to dominate the market. The report also covers detailed application ideas across sectors including consumer electronics, automotive and industrial markets. This includes well characterised products like the smartphone or tablet, through to important future markets like controllers for AR & VR devices, and also smaller niches like musical instruments and home appliances & tools.

Whilst force sensing is certainly not the user interface end game, it represents a very important step as the entire value chain behind user interfaces moves beyond touch. The value proposition is initially subtle, with many interesting features as detailed within the report but a distinct lack of any "killer-app" within the consumer space for now. However, as technology and markets mature, we expect that areas such as input controllers for VR and AR devices (building on an initial base from the games console controller space) and later as a user interfaces in the automotive spaces will drive growth to around $1.8bn in annual force sensor sales for user interfaces alone.

With extensive coverage across industries including sensors, displays, touch (e.g. TCFs) and printed electronics, as well as coverage of verticals like wearable technology, other consumer electronics markets and also in the automotive space, analysts have collaborated to produce a highly contextual, insightful and timely report on an industry which is developing very quickly and is relevant to the entire electronics value chain.

Contents:
1. EXECUTIVE SUMMARY
1.1. Force, pressure and displacement
1.2. The transducer itself varies significantly
1.3. Force sensing technology: categories and companies
1.4. Force sensing is already well established in many sectors
1.5. 2015: Force sensing enters mainstream consumer electronics
1.6. Beyond the first adopters: drivers towards force sensing
1.7. Force: here to stay or part of a bigger trend?
1.8. Development of new user input technologies
1.9. Evolution of displays and the GUI
1.10. Force as one piece of a bigger picture
1.11. This report will focus on user interface technologies

2. INTRODUCTION: FORCE SENSING IN USER INTERFACES
2.1. Force sensing within user interfaces
2.2. Beyond touch...
2.3. The benefits of adding force sensing to a user interface
2.4. Confirming an intention behind an input
2.5. Intent: vital for safety with heavy machinery
2.6. Creating more advanced and/or realistic tactile input options
2.7. Tactile input options: Musical instruments & Gaming
2.8. Tactile input options: Appliances
2.9. Shortcuts in productivity apps
2.10. Additional security
2.11. Enabling new applications
2.12. Historic examples of force sensing in smartphones
2.13. Historic examples of force sensing in smartphones
2.14. Why now for force touch integration?
2.15. Force: here to stay or part of a bigger trend?
2.16. Development of new user input technologies
2.17. Evolution of displays and the GUI

3. FORCE SENSORS IN DISPLAYS
3.1. The importance of sensors in displays
3.2. Predecessors to force touch
3.3. Advantages over incumbent systems
3.4. Apple's introduction of Force Touch and 3D Touch
3.5. Other commercial examples of force touch: Huawei
3.6. Other commercial examples of force touch: ZTE
3.7. Choices of sensor position in the display: Bezel
3.8. Choices of sensor position in the display: On-Cell
3.9. Choices of sensor position in the display: In-Cell
3.10. Choices of sensor position in the display: Behind-Cell
3.11. Considerations by position
3.12. Mechanical force sensing in the display bezel
3.13. System construction and working principle
3.14. IP examples from the largest players
3.15. Other IP examples
3.16. Technology applicability by display force sensor type
3.17. Forecasts: Force sensors in touch screens (volume)
3.18. Forecasts: Force sensors in touch screens (revenue)
3.19. Forecast methodology

4. FORCE SENSING TECHNOLOGY
4.1. Technology options for force sensing
4.2. Definitions
4.3. Technology benchmarking
4.4. Benchmarking: key and descriptions

5. CAPACITIVE FORCE SENSING
5.1. Capacitive Force Sensing
5.2. Capacitive force sensing in smartphones
5.3. Force sensing in Apple's 3D Touch
5.4. Another example: EAP Strain Sensor

6. RESISTIVE FORCE SENSING
6.1. Resistive force sensing
6.2. Metal / foil strain gauge load cells
6.3. Example Suppliers: VPG and HBM
6.4. Applications for strain gauges
6.5. Industrial markets dominate applications
6.6. Semiconductor strain gauges
6.7. Different types of "piezoresistors"
6.8. Sensor construction and response type
6.9. Force sensing resistor design
6.10. Sensor implementation in devices
6.11. Transparent FSRs have been developed
6.12. Transparent FSR for displays: Progress and Targets
6.13. Piezoresistive textiles
6.14. Artificial skin made with gold nanoparticles
6.15. Artificial skin made with gold nanoparticles (cont.)
6.16. Example applications for FSRs
6.17. Force Sensing Resistors: Players

7. PIEZOELECTRIC FORCE SENSING
7.1. Piezoelectric force sensors
7.2. Implementation: Force overlay on touch screen
7.3. Implementation: Force and touch added together
7.4. Piezoelectric overlays for displays
7.5. In-cell architecture

8. OTHER TYPES OF FORCE SENSOR
8.1. Active stylus force sensing
8.2. Deriving force from touch sensing area
8.3. Force sensor types: Conclusions

9. EXAMPLES OF FORCE SENSOR TECHNOLOGY COMPANIES
9.1. FSRs: Tekscan, Interlink Electronics, Sensitronics
9.2. NextInput
9.3. Synaptics
9.4. Stanton, Nissha and Peratech: "DMR technology"
9.5. Vissumo, QSI Corporation and Beijer Electronics
9.6. F-Origin/MyOrigo

10. HAPTICS: AN ESSENTIAL PART OF THE FORCE SENSING USER INTERFACE
10.1. The importance of haptics in force sensing
10.2. What are haptics?
10.3. The broader haptics industry: two sides
10.4. Haptic Technologies: A brief overview
10.5. How the sense of touch works
10.6. The potential value-adds from haptic feedback
10.7. Reasons for the difference: Potential vs Actual use
10.8. LRA vs ERM: Which is best for smartphones?
10.9. Technology Summary: ERMs
10.10. Examples of ERM Motor Suppliers
10.11. ERM Drivers
10.12. Technology Summary: LRAs
10.13. Apple's Taptic Engine
10.14. Examples of Linear Actuator Suppliers

11. MARKETS
11.1. Musical Instruments
11.2. Consumer Electronics: Touch devices
11.3. Consumer Electronics: Peripherals
11.4. Automotive: Advanced user interfaces
11.5. Industrial
11.6. Overview by application
11.7. Forecast by application: (revenues from force sensors in user interfaces by product category)

12. OTHER RELATED USES FOR FORCE SENSING
12.1. Medical & Dental
12.2. Automotive: Occupancy Sensors
12.3. Robotics: control and end effectors
13. MARKET FORECASTING: 2016-2026
13.1. Forecast Details and Assumptions
13.2. Product categories (summary)
13.3. Products with force sensing UI (volume, 2015-2027)
13.4. Volumes: Consumer electronics sector
13.5. Volumes: Automotive, medical, industrial, other
13.6. Price of force sensor integration (by product, 2015-2027)
13.7. Price of force sensor integration (by product, 2015-2027)
13.8. Products with force sensing UI (revenue, 2015-2027)
13.9. Revenue from consumer electronics applications
13.10. Revenue from automotive, medical, industrial and others
13.11. Force sensor % integration by sector (consumer electronics)
13.12. Force sensor % integration by sector (wearable technology)
13.13. Technology forecasts: 2017 - 2027
13.14. Technology by product type
13.15. Definitions & Abbreviations

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3987741/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Force Sensing in User Interfaces 2017-2027
Web Address: http://www.researchandmarkets.com/reports/3987741/
Office Code: SC2GJBN3

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 4987</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5288 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7484</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7785 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: __ Last Name: __
Email Address: * __
Job Title: __
Organisation: __
Address: __
City: __
Postal / Zip Code: __
Country: __
Phone Number: __
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
</tbody>
</table>
| Bank Address | Ulster Bank,
 | 27-35 Main Street,
 | Blackrock,
 | Co. Dublin,
 | Ireland. |

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World