Electric Boats and Ships 2017-2027

Description:

This brand-new report looks at this fragmented but often highly profitable and growing sector. There are already over 100 manufacturers of electric boats and ships. The report finds that the market for hybrid and pure electric boats and ships will rise rapidly to over $20 billion worldwide in 2027 for non-military versions. Recreational boats is the largest and fastest growing electric marine market in sales number, followed by underwater leisure and autonomous underwater vehicles.

On-water commercial marine category is currently the largest marine EV value market. Leisure craft on inland waterways, notably in the USA and Europe, will become the largest sector as more places from Germany to India ban internal combustion engines or, as with SunMoon Lake in Taiwan, the operators unanimously agree to go clean and quiet.

Dirty ships

The decade will end with huge environmental pressures making owners of industrial and commercial seagoing craft clean up more rapidly. Long life of a ship will no longer be an excuse. One large ship can emit the global warming carbon dioxide of 70,000 cars, the acidic nitrogen oxides of two million cars and the carcinogenic particulates of 2.5 million cars. Volkswagen dieselgate is not the only scandal!

Long history: all to play for

Hybrid and pure electric marine vessels (EVs), with electric propulsion some or all of the time, have been around for over 100 years. The electric boat Lady Lena dates from 1890. Currently, the market for electric and hybrid watercraft is still significantly low with about 1-2% of the addressable market.

Profusion of examples

All-electric systems consist of an electric motor being powered by a battery pack. Hybrid electric systems consist of a fuelled engine and energy storage used to propel the craft sometimes (parallel hybrid) or to charge the battery (series hybrid). The report, "Electric Boats and Ships 2017-2027" gives a profusion of examples today and planned - the sweet spot being small to medium craft. Traditional "electric drive" where there is no substantial battery and therefore no pure electric mode or even downsized engine is mainly suited to large craft: it is seen in diesel-electric and nuclear-electric ships and submarines not covered in the report.

Add retrofit and electric outboard motors

Beyond new electric craft, there is already a substantial and growing business in retrofit of hybrid electric ferries and other ships with pure electric or hybrid electric powertrains. There is also potential to sell hundreds of thousands of pure electric outboard motors yearly as they become more affordable and more energy harvesting is provided on the craft to charge the batteries, improving range. Cost of ownership plummets due to due to cheap electricity, energy harvesting and reliability. The report explains the many new forms of energy harvesting delivering on-board electricity.

New things possible with EV craft are:

- Autonomy is easier.
- River boats: silent study of wild life.
- Ski boats, record breaking: best acceleration.
- Leisure submarines: fun, independence for anyone.
- Military: little or no heat or sound signature attracting missiles.
- Energy independence by harvesting sun, waves, tide, wind etc is easier.
- Workboats: provide electricity at destination for equipment and disaster recovery.
- Tugboats: maximum power from stationary and holding position more precisely. Lowest up front cost for small vessels and potentially lowest cost of ownership for most vessels.
- Saving planet, reducing deaths & sickness of humans and wildlife from local air and water pollution.
Battery needs and roadmap: Steady improvement in battery performance and price will drive demand upwards as will faster charging. “Electric Boats and Ships 2017-2027” gives a particularly thorough coverage of the batteries and explains supercapacitor and other system evolution. Although the marine market is not the largest addressable market for Li-ion batteries, it is expected to be a major secondary value market due to the battery typically being unusually large, one MWh not being unusual.

Technical limitation facing such Li-ion batteries include energy and power density, life, charge rate, size, and weight. Other factors hindering the fast adoption of electric and hybrid marine technology is the ability to maintain and find replacement components for such propulsion systems. The report is therefore essential reading for all in the marine craft supply chain plus legislators and investors seeking latest infograms, forecasts and data in easily grasped form - commercial rather than academic.

Contents:

1. EXECUTIVE SUMMARY
 1.1. Executive Summary

2. WHY DO WE NEED ELECTRIC & HYBRID MARINE VESSELS
 2.1. Background - Marine Industry
 2.2. Large emission from marine vessels

3. KEY DRIVERS FOR ELECTRIC AND HYBRID MARINE VESSELS
 3.1. Key drivers for electrification of marine vessels
 3.2. Government regulations for the marine industry
 3.3. Examples of current and future maritime regulations
 3.4. MARPOL Annex VI timeline for adoption of sulphur content in marine fuels
 3.5. Strict government sulphur (SOx) regulations for the marine industry
 3.6. Nitrogen oxides (Nox) Tier I-II-III requirements
 3.7. Current and possible future global ECAs
 3.8. Assumed fuel prices (€/tonne) as a function of fuel sulphur content (%)
 3.9. Global economy and demand for shipping
 3.10. Example of “clean city initiatives”
 3.11. Other benefits of marine EV
 3.12. Examples of marine and river EV making new things possible

4. BENEFITS OF ELECTRIC & HYBRID MARINE VESSELS - A CLOSER LOOK
 4.1. Benefits of electric and hybrid marine EVs
 4.2. Benefits for the electrification and hybridization of marine vessels
 4.3. Reduced emission
 4.4. Battery hybridization - large power variations
 4.5. Reduction in fuel consumption
 4.6. Fuel saving in electric and hybrid marine vessels

5. DEFINITION OF MARINE VESSELS MARKET SEGMENTS
 5.1. Small recreational boats
 5.2. On-water commercial and high end leisure
 5.3. On-water industrial
 5.4. Underwater leisure
 5.5. Case study
 5.6. Underwater AUV
 5.7. JAMSTEC URASHIMA Japan

6. MARKET ANALYSIS AND FORECAST 2017-2027
 6.1. Addressable market of recreational boats (ICE boats) and electric recreational boats market penetration.
 6.1.1. Recreational ICE boats addressable market
 6.1.2. Recreational boat production by country
 6.1.4. Electric outboard motor market share historical
 6.1.5. Outboard motor boats will still be the largest market for electrification in the recreational boat segment
 6.1.6. Detail of electric outboard motor market
 6.1.7. What does it take to make electric & hybrid marine mainstream?
 6.2. Addressable market for on water commercial and high end leisure boats and electrification of the segment.
6.2.1. Is the technology mature enough?
6.2.2. Marine vessels for pure electric (battery) operation
6.2.3. Ferries are the first candidates for electrification
6.2.4. Current and possible future global ECAs
6.2.5. Environmental and Safety drivers
6.2.6. Ferries have been the first to become electric
6.2.7. Scotland a pioneer in hybrid ferries
6.2.8. Global ferry industry in numbers
6.2.9. M.V. Klitsa Case Study
6.2.10. Effectiveness of hybrid propulsion - Scandlines perspective
6.2.11. Market share of battery suppliers for commercial vessels
6.2.12. Maritime batteries deployed in electric and hybrid vessels
6.2.13. Superyacht sales 2015 all powertrains
6.2.14. Yacht manufacturing by country
6.2.15. Market share by battery technology
6.3. Addressable market for on water industrial and electrification of the segment
6.3.1. Industrial marine ships
6.3.2. Shipbuilding by country
6.3.3. Industrial marine ships addressable market
6.3.4. Market growth drivers
6.3.5. Industrial marine electric vehicle market forecast 2017-2027
6.3.6. Hyundai Heavy partners with Magna E-Car
6.3.7. Assumptions on the forecast
6.3.8. Marine vessels for hybrid (diesel & electric) operation
6.3.9. Hybrid battery powered diesel-electric propulsion
6.3.10. Fuel saving in electric and hybrid marine vessels
6.3.11. Marine versus automotive electrification
6.3.12. Mechanical vs electric transmission - End user perspective
6.3.13. Water Vehicle Electrification

7. AUTONOMOUS UNDERWATER VEHICLES

8. UNDERWATER LEISURE MARINE

9. KEY ENABLING TECHNOLOGIES FOR MARINE ELECTRIC VEHICLES
9.1. What does it take to make electric & hybrid marine mainstream?

10. MARINE PROPULSION TECHNOLOGIES
10.1. Which technology would be adopted in the maritime industry?
10.2. Diesel propulsion
10.3. Wind propulsion
10.4. Example of wind propulsion in a large ship
10.5. Norsepower Rotor Sail - Specification
10.6. Gas Turbine Propulsion
10.7. Fuel Cell Propulsion
10.8. Biodiesel Fuel Propulsion
10.9. Solar Propulsion
10.10. Gas fuel or Tri Fuel Propulsion
10.11. Steam Turbine Propulsion
10.12. Water-Jet Propulsion
10.13. Diesel-Electric or hybrid Propulsion

11. ENERGY STORAGE
11.1. Benefits of battery technology - Summary
11.2. Price sensitivity
11.3. Li-ion battery cost forecast - Marine systems

12. MARINE BATTERIES
12.1. Battery categories
12.2. Battery based on rechargeability
12.3. Batteries for marine EVs
12.4. Lithium-ion vs Nickel metal hydride (NiMH)
12.5. Lithium polymer vs Nickel-metal hydride (NiMH)
12.6. Comparison of different maritime batteries
12.7. Qualitative comparison of marine batteries
12.8. Comparison of specific energy and energy density of various battery systems
12.9. Ricardo's view 12.10. Selection of marine battery technology
12.11. Battery requirement for maritime vessels
12.12. Li-ion battery cell construction
12.13. The main components of a battery cell
12.14. Basic operation of a Li-ion cell
12.15. Lithium-ion battery components, functions, and main materials
12.16. Electrochemical inactive components in the battery
12.17. Li-ion battery design
12.18. Comparison of different Li-ion cell design
12.19. Li-ion battery cell, module and pack
12.20. Cells - modules - battery packs
12.21. Current challenges facing Li-ion batteries
12.22. Challenges with Li-ion batteries
12.23. Key players in marine battery production
12.24. Corvus Energy
12.25. Marine references - Corvus Energy
12.26. Saft
12.27. Saft Li-ion technology for marine application
12.28. Saft - Safety Management
12.29. Saft - Sizing a battery for a vessel
12.30. Li-ion Super-Iron Phosphate®: a safe choice
12.31. Saft's Seanergy®: A modular concept including electronics
12.32. Marine references - Saft
12.33. Saft: Advantages of hybrid power
12.34. Valence Technology
12.35. Valence product range
12.36. Leclanché
12.37. Akasol
12.38. XALT Energy
12.39. Case study - XALT's ESS for a Platform Supply Vessel (PSV)
12.40. ABSL
12.41. Traction batteries for AUVs
12.42. The lure of lithium polymer versions of lithium-ion
12.43. How to improve lithium-ion traction batteries
12.44. Technology for new demands
12.45. Battery impact
12.46. Mapping of battery manufacturers and marine category
12.47. Favoured trends for marine EV technologies
12.48. Evolution of affordable, mainstream hybrid marine and other vehicles
12.49. Manufacturers of marine EVs

13. EXAMPLES OF PURE ELECTRIC & HYBRID MARINE VESSELS
13.1. aquawatt 550 elliniko
13.2. Duffy - 16 Sport Cat Lake Series
13.3. Ampere
13.4. Savannah - superyacht
13.5. Turanor PlanetSolar
13.6. Green City Ferries - Innovation on Swedish waterways
13.7. Green City Ferries - Innovation on Swedish waterways
13.8. 006 Yacht
13.9. TEXELSTROOM
13.10. The Prius of the Sea - battery hybrid ferry
13.11. Results from Scandlines M/S Prinsesse Benedikte
13.12. Scandlines HYBRID FERRY - Battery system
13.13. Scandlines HYBRID FERRY - Inverter
13.14. ASD TUG 2810 HYBRID
13.15. Hybrid-electric Tag 60 yacht
13.16. Hybrid commercial marine vessels
13.17. World's first all-electric commercial fishing vessel - "Karoline"
13.18. DEDAVE (Deep Diving AUV for Exploration) - IOSB's AUV
13.19. Echo Voyagers
13.20. Leisure and tourist submarines
13.21. HH Ferries Group conversion

14. OTHER ENERGY STORAGE SYSTEMS FOR MARINE VESSELS - SUPERCAPACITORS AND FUEL CELLS
14.1. What is a supercapacitor?
14.2. Nomenclature
14.3. Relative performance in energy and power of different energy storage technologies
14.4. Supercapacitors in shipboard power systems
14.5. Peak Power USS Arleigh Burke
14.6. World's first electric passenger ship based on supercapacitor technology - the "Ar Vag Tredan"
14.7. Supercapacitors for emergency start in boats
14.8. Fuel cells + Supercapacitors in Small Marine Applications
14.9. Supercapacitor replaces battery across fuel cell
14.10. Lithium-ion capacitor performance in context

15. FUEL CELL TECHNOLOGY FOR MARINE APPLICATION
15.1. Hydrogenesis - The UK's first hydrogen fuelled ferry
15.2. Hydrogenesis
15.3. The SchiBZ - Ship Integration of Fuel Cells
15.4. Fuel cell principles
15.5. Application of the SchiBZ system
15.6. Fuel cell - Futuristic technology

16. AUTONOMOUS MARINE VEHICLE

17. ENERGY HARVESTING IN MARINE APPLICATIONS
17.1. Case Study
17.2. Multiple energy harvesting coming in "Glider" AUV surfaces to recharge by wave and solar
17.3. Liquid Robotics USA

18. CONCLUSIONS
18.1. Conclusions and outlook

Ordering:
Order Online - http://www.researchandmarkets.com/reports/4031694/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Electric Boats and Ships 2017-2027
Web Address: http://www.researchandmarkets.com/reports/4031694/
Office Code: SC2GWLQ9

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 4987</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5288 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7484</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7785 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof

First Name: ___ Last Name: ___

Email Address: ___

Job Title:__

Organisation:__

Address: ___

City: ___

Postal / Zip Code:__

Country: ___

Phone Number: __

Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World