Energy Independent Electric Vehicles Land, Water, Air 2017-2037

Description: This report "Energy Independent Electric Vehicles Land, Water, Air 2017-2037" reveals how energy independent electric vehicles (EIV) such as solar racers were a curiosity five years ago, too weak to lead to anything generally useful. Then a solar boat and plane went round the world and a solar plane is now being prepared that will rise from earth to 80,000 feet on sunshine alone.

Entirely solar driven golf cars, small buses and passenger boats are on sale. Solar dirigibles for heavy lifting and long distance transport are being prepared for sale and this report reveals details of many solar cars demonstrated for mainstream use from 2020. They generate up to eight times as much electricity as predecessors: learn how and why.

Boats are being prepared that are entirely powered by electricity from on-board wind turbines and/or solar and/or tide and waves. These and other developments are about to be recognised as the kernel of a business of over $100 billion in EIVs employing multi-mode energy harvesting, extreme powertrain efficiency and other new advances. Investment in these new technologies is de-risked by the fact that they will be useful way beyond EIVs.

The leading solar racer company has already spun off five businesses exploiting its discoveries in aerodynamics and the like. The report shows how EIVs have bigger potential than those navigationally autonomous vehicles that are all the rage right now. Indeed they leverage today's "autonomy" while also transforming the future of land vehicles, boats and aircraft with human drivers. Be first to learn the dramatic winners, losers and benefits to society of all this.

The report uses easily understood infograms, graphs and tables to present the discoveries and interpretation by globetrotting multi-lingual, PhD level analysts. There are even latest inputs in 2017. 47 categories of electric vehicle are forecasted by number and value 2017-2027.

With a profusion of examples and new market research, the report explains why billions of dollars are already being spent on unmanned military and non-military aircraft that will stay aloft for 5-10 years - energy independent. Learn how some solar cars even donate electricity to the grid and others are intended to be mainstream in Germany, Australia, China and elsewhere. An Italian pizza van does all its travel and cooking using unfolding solar plus a telescopic, unfurling wind turbine used when it is stationary.

In 2017, companies are already negotiating to license the design for series manufacture. Unmanned solar inflatable wings will carry heavy loads across Canada and there is much more going on with wind, wave, tide and other ambient power grabbed by boats, planes and so on. Readers see the future. For example, discover how remote communities and developing countries will prosper as a consequence.

Utilities and charging station networks are bypassed. Batteries become less important in EVs. Less battery may be needed - sometimes no battery at all - but the report forecasts multi-billion dollar businesses being created that make the unprecedentedly efficient powertrains, multi-mode energy harvesting, lightweighting and streamlining required. "Energy Independent Electric Vehicles Land, Water, Air 2017-2037" reveals how that includes new technology of regeneration including elimination of hot shock absorbers and disk brakes, electricity being produced instead.

Learn how smart materials are planned - structural electronics replacing the components-in-a-box approach. The reinvented car, boat and plane awaits, easier to use, safer, greener, with lower cost of ownership and longer life. Previously impossible missions are identified and the boost to mobile robotics is revealed. Participate and invest before the herd. Here is the knowledge that gives you the power.

Contents:
1. EXECUTIVE SUMMARY
 1.1. Executive summary and conclusions 1
 1.2. Executive summary and conclusions 2: Types of EIV and related vehicles
 1.3. EIV operational choices
 1.4. Executive summary and conclusions 3
1.5. Executive summary and conclusions 4
1.6. Executive summary and conclusions 5
1.7. Executive summary and conclusions 6
1.8. Executive summary and conclusions 7: EIV Technology roadmap 2017-2037

2. INTRODUCTION
2.1. Energy Independent Vehicles: energy, definition and function
2.2. Definition and primary features
2.3. What is energy harvesting?
2.4. Characteristics of the High Power Energy Harvesting essential to EIVs
2.5. Good features and challenges of the four most important EH technologies in order of importance
2.6. High power energy harvesting: examples with intermittency and suppliers
2.7. Efficiency achieved and theoretical potential for improving efficiency of energy harvesting in and on EIVs
2.8. Energy harvesting technologies with examples of good features in blue
2.9. More EH in a vehicle
2.10. Intermittent power generated
2.11. Comparison of pn junction and photoelectrochemical photovoltaics
2.12. Priorities for high power EH in EIVs, for primary traction power, with examples
2.13. Main PV options beyond silicon
2.14. Chasing affordable, ultra-lightweight conformal PV for EIVs
2.15. Best Research-Cell Efficiencies
2.16. Thin, lightweight Fresnel lens concentrator
2.17. PV cost and efficiency trends
2.18. Lizard EIVs

3. NEW FORMATS ARE VERY IMPORTANT FOR EIVS
3.1. New formats are very important for EIVs
3.2. Colloidal Quantum Dot spray on solar?
3.3. But mostly still silicon today
3.4. Harvesting technologies now and in future for air vehicles
3.5. Overlap between mechanically and electrically energy independent vehicles
3.6. Examples of e-fiber projects aimed at use in vehicles
3.7. European Powerweave project: airships & sails
3.8. Hybrid piezo photovoltaic material
3.9. Triboelectricity is being developed for car tires
3.10. EIVs - more than adding something to a vehicle
3.11. EH system
3.12. Qualcomm vision - next enabling and transitional technologies
3.13. Autonomous operation + EIV: a synergistic ecosystem
3.14. Dynamic wireless charging - stepping stone to EIV
3.15. Korea - dynamic charging from road
3.16. Dynamic charging will use very low cost electricity

4. ENERGY HARVESTING AS SYSTEMS IN EIVS
4.1. EH system
4.2. Internal vehicle efficiency improvement by EH - progress towards EIVs

5. EXTREME POWERTRAIN EFFICIENCY

6. EXTREME LIGHTWEIGHTING
6.1. Lightweighting materials
6.2. De-icing heater as part of an aircraft wing
6.3. Use of aluminium and plastics to halve microcar weight
6.4. Load-bearing and smart skin electrics/ electronics are part of the EIV end-game
6.5. Structural electronics (referring to electrics and electronics) is the end game for most EIV components
6.6. Lightweighting of electronic components
6.7. Tesla S chassis largely made of aluminium

7. NEXT GENERATION ENERGY STORAGE
7.1. Energy storage technologies in comparison
7.2. Next generation batteries: summary
7.3. Why Post lithium-ion batteries now?
7.4. Li-ion performance will plateau even with new materials
7.5. US DOE projections of traction battery cost
7.6. What are post Li-ion battery technology candidates?
7.7. Challenges for Post Lithium-ion Batteries
7.8. Mainstream market requirements: Performance and price
7.9. Automotive Lithium Battery Price evolution at pack level
7.10. Battery price trends per sector
7.11. Technology maturity roadmap per market segment
7.12. Technologies of Post Lithium-ion Batteries
7.13. Benchmarking of theoretical battery performance
7.15. Why Silicon anode batteries?
7.16. Silicon anode
7.17. Motivation - why Lithium Sulfur batteries?
7.18. Challenges Lithium Sulfur battery
7.19. Why solid state Li-ion or other batteries?
7.20. Solid state batteries?
7.21. Lithium capacitor
7.22. Supercapacitors
7.23. Supercapacitors and hybrid supercapacitor
7.24. Nomenclature
7.25. Lithium capacitors technology performance of products available today
7.26. Sodium ion batteries
7.27. Summary of technology challenges for future traction batteries
7.28. Bundesverband Solare Mobilität - Federal Association of Solar Mobility

8. ENERGY INDEPENDENT VEHICLES IN ACTION

9. EIVS ON LAND, ON-ROAD
9.1. Stella Lux passenger car Netherlands
9.2. Sunswift eVe passenger car Australia
9.3. Immortus passenger car Australia
9.4. POLYMODEL micro EV Italy
9.5. Venturi Eclectic passenger car Italy
9.6. Dalian tourist bus China
9.7. NFH-H microbus China
9.8. Kayoolu large bus Uganda
9.9. Cargo Trike micro EV UK
9.10. Sunnycclist Greece
9.11. Hanergy China
9.12. Sion Germany
9.13. Clean Motion Midsummer Sweden

10. SOLAR RACERS
10.1. World Solar Challe
10.2. Other solar races
10.3. Solar racer technologies - non solar parts
10.4. Improvement of solar racer performance parameters
10.5. Solar racer technologies - photovoltaics
10.6. Power of One solar racer car Canada
10.7. Bethany solar racer UK
10.8. CUER Resolution solar racer UK
10.9. EVA solar racer UK
10.10. Nuna 7 solar racer Netherlands
10.11. Nuna 8 solar racer Netherlands
10.12. Drifter
10.13 solar racer USA

11. EIVS ON LAND, OFF-ROAD
11.1. Vinerobot micro EV Europe

12. EIVS ON WATER SEAGOING
12.1. REPSAIL boat Poland, Turkey etc
12.2. Mayflower Autonomous Research Ship (MARS) UK, USA
12.3. RENSEA boat Iceland, Norway, Sweden
12.4. Turanor boat Germany
12.5. Vaka Moana boat Netherlands
12.6. Sun21 boat Switzerland
12.7. Seaswarm boat USA
12.8. Inerjy EcoVert
12.9. SOELCAT boat Netherlands
12.10. SeaCharger autonomous solar boat
12.11. Solarwave autonomous solar boat
12.12. Energy Observer France

13. EIVS SEAGOING UNDERWATER
13.1. Seaglider AUV boat USA
13.2. Cyro AUV jellyfish USA

14. EIVS INLAND WATER
14.1. Solar racing boats Netherlands
14.2. Loon boat Canada
14.3. Alster Sun Netherlands, Germany
14.4. ECO Marine Japan

15. EIVS AIRBORNE INFLATABLE
15.1. Nephelios airship France
15.2. Northrop Grumman airship USA
15.3. Mitre DARPA airship USA
15.4. Lockheed Martin HALE-D airship USA
15.5. Dirisolar airship France
15.6. Turtle airship USA

16. EIVS FIXED WING
16.1. Solarship inflatable fixed wing aircraft Canada
16.2. Atlantik Solar 2 UAV Switzerland
16.3. Zephyr 7 UAV UK, Germany
16.4. Titan Aerospace UAV USA
16.5. Solar Eagle UAV USA
16.6. Facebook AQUILA UAV US, UK
16.7. Silent Falcon UAV USA
16.8. Helios UAV USA
16.9. Sunstar USA
16.10. Sunseeker Duo USA
16.11. Solar Impulse Switzerland
16.12. SolarStratos Switzerland
16.13. China Aerospace

17. EIV TECHNOLOGY SPAWNS ADVANCES FOR ALL VEHICLES
17.1. Energy Independent Vehicles: here come the benefits

Ordering:
Order Online - http://www.researchandmarkets.com/reports/4068691/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Energy Independent Electric Vehicles Land, Water, Air 2017-2037
Web Address: http://www.researchandmarkets.com/reports/4068691/
Office Code: SC2GLULR

Product Formats
Please select the product formats and quantity you require:

- Electronic (PDF) - 1 - 5 Users: USD 5010
- Electronic and Hard Copy (PDF) - 1 - 5 Users: USD 5310 + USD 56 Shipping/Handling
- Electronic (PDF) - 1 - 10 Users: USD 7517
- Electronic and Hard Copy (PDF) - 1 - 10 Users: USD 7818 + USD 56 Shipping/Handling

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp