Electric Vehicles for Construction, Agriculture and Mining 2017-2027

Description: Electric vehicles for construction, agriculture and mining will be a $81 billion market in 2027. Komatsu, John Deere, Caterpillar, and others manufacture the big vehicles - mainly hybrid - while other manufacturers offer smaller, pure-electric versions.

Pure electric is a legal requirement indoors. Outdoors, fuel saving and better performance attracts. Cranes and man lifters have many applications. Their production volumes are larger than most people realise. So it is with the electric versions set for 165,000 to be sold in 2027. This is an industry about to change radically.

For example, in mining, over 90% of the world's mines are open cast. They are often in remote places up to 4000 meters above sea level, where shipping diesel can cost more than buying it. Consequently, there is now a move to have 350 kW giant haul trucks working the floor and separately the top of the mine with electric rail-veyors lifting the ore from bottom to top. In an all-electric solution new pollution laws can be met, image improved and money saved, the electricity coming from the mine's own wind turbines and photovoltaics. Battery swapping and fast charging of those batteries means 350 kWh batteries suffice - big but no larger than those in other EV sectors.

The new report explains all this and gives detailed forecasts, comparisons and assessments. It shows how mines will electrify much more but only after the current bust period of the boom-and-bust that characterises this industry. It shows why the ubiquitous tractor in agriculture will, at last, be electric in volume quantities by 2027 and how new forms of vehicle design are coming.

Benchmarking from the 46 categories of electric vehicle that the analyst forecasts, the report explains what new technologies will arrive and why. Supercapacitors, new power components, greater modularisation and integration will transform this industry. The report draws on interviews and results of many recent conferences on these sectors.

Contents:
1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Overview
 1.2. Value proposition and environmental restrictions
 1.3. Are petrol prices affecting the electrification of industrial electric vehicles?
 1.4. Forecasts 2017-2027
 1.4.1. All categories
 1.4.2. Mining and agriculture
 1.4.3. Construction market
 1.5. Autonomous vehicles for agriculture and mining
 1.6. Examples of cranes and lifters
 1.7. Caterpillar and Komatsu move to energy harvesting on hybrid electric vehicles
 1.8. Powertrain situation in 2017
 1.8.1. Leaders of change, move to hybrids
 1.8.2. Move to 48V mild hybrids
 1.8.3. Move to autonomy
 1.8.4. Volvo electrification of mining vehicles
 1.8.5. Volvo first in the world with self-driving truck in underground mine
 1.8.6. Breakthrough Huddig hybrid wheel loader in 2018
 1.8.7. Forklifts change little
 1.9. View at EVS29 Montreal Canada 2016
 1.9.1. Electric and hybrid electric non-road mobile machinery - present situation and future trends
 1.9.2. Introduction
 1.9.3. Applications
 1.9.4. Market overview
 1.9.5. Fuel consumption and emissions
 1.9.6. Machine operation and duty cycles
 1.9.7. Trends towards hybridization
 1.9.8. Principles of hybridization
1.9.9. Hybrid powertrain architectures
1.9.10. Main power sources
1.9.11. Drivers for hybridization and electrification
1.9.12. Technical solutions of present non-road mobile machinery
1.9.13. Discussion and conclusions

2. MINING ELECTRIC VEHICLES
2.1. Overview
2.1.1. Underground mining
2.1.2. The cost of clean air
2.1.3. Greater depth, greater benefits
2.1.4. Open cast mining
2.1.5. Photovoltaics: threat and salvation
2.2. Mining Industry Vehicle Outlook 2013 2025
2.2.1. 2013 market estimate
2.2.2. Caterpillar USA, Komatsu Japan, Atlas Copco Sweden
2.2.3. Sandvik Sweden
2.2.4. Joy Global USA
2.2.5. PapaBravo Canada
2.2.6. Mining vehicles market estimate 2013
2.3. The state of the mining industry
2.4. Thermal coal in structural decline
2.5. Roadmap to electrification of mining vehicles
2.5.1. Asia's growing mining industry, increasingly exploited with electric vehicles: Shaanxi Tongyun China, XEMC China etc
2.5.2. UQM Technologies Inc enters cooperative production and supply agreement with the Keshi Group
2.5.3. Canadian government supports hybrid diesel electric loaders
2.6. Pioneer companies in electrification
2.6.1. Atlas Copco Sweden
2.7. Forecast: mining electric vehicles 2014 2025
2.7.1. Legal push
2.8. EPA's regulation on non-road diesel engines
2.8.1. Overview
2.8.2. Non-road emissions reductions

3. LESSONS FROM RECENT CONFERENCES
3.1. Overview
3.2. Hydraulic vs electric efficiency
3.3. Market forecasts
3.4. Powertrain trends
3.5. Energy Independent Vehicles EIV
3.6. Projects and new industrial EVs
3.7. Wheel loaders
3.7.1. Hitachi
3.7.2. Oerlikon
3.7.3. HUDIG TIGON hybrid excavator and wheel loader
3.7.4. John Deere
3.7.5. Volvo Group
3.8. Star of the show
3.8.2. Future dreams!
3.9. Components and systems
3.9.1. Power electronics
3.10. Energy storage
3.10.1. Lithium Sulfur batteries
3.10.2. Motors
3.10.3. User needs and benefits

4. CONSTRUCTION AND AGRICULTURAL VEHICLES
4.1. Overview
4.1.1. News in 2016
4.1.2. Market drivers
4.2. Pioneers in electrification of construction and agriculture vehicles
4.2.1. Caterpillar
4.2.2. Caterpillar - BAE Systems UK
4.2.3. John Deere (Deere and Company) USA
4.2.4. Mitsubishi Japan
4.2.5. Multi Tool Trac Netherlands
4.3. Agriculture industry vehicle market
4.3.1. Overview
4.3.2. Agricultural vehicle electrification
4.3.3. The need for a standardised communication system in Agricultural Machines
4.3.4. AGCO Fendt Germany
4.3.5. Fresh Fruit Robotics
4.3.6. Ibex Automation Ltd
4.3.7. John Deere USA
4.3.8. Merlo Italy
4.3.9. New Holland (Fiat Italy)
4.3.10. Robots in agriculture
4.4. Construction and agricultural vehicle market and players
4.4.1. Mahindra & Mahindra
4.4.2. John Deere USA
4.4.3. JCB UK
4.4.4. Concept autonomous tractor development - August 2016
4.4.5. Agricultural vehicle market by company
4.4.6. Construction vehicle market by company
4.4.7. Forecast for construction and agricultural electric vehicles 2014-2025

5. CRANES, LIFTERS, MOBILE PLATFORMS
5.1. Overview

6. KEY ENABLING TECHNOLOGIES IN MINING, AGRICULTURAL AND CONSTRUCTION ELECTRIC VEHICLES
6.1. Overview
6.2. Batteries and voltages
6.2.1. Batteries
6.2.2. Voltages
6.3. Supercapacitors
6.3.1. VISEDO Finland
6.3.2. Supercapacitors in Port Cranes: Maxwell Technologies USA, Ioxus USA, VISEDO Finland
6.4. Range extenders and fuel cells
6.5. Electric Motors
6.5.1. Overview
6.5.2. Benefits of electric motors in agricultural machines.
6.5.3. Design aspects
6.5.4. Regenerative braking considerations
6.5.5. Reducing limitations: trend by type
6.5.6. Motor technology by type of vehicle
6.5.7. Detailed design studies still come up with opposite conclusions
6.5.8. Over supply initially
6.5.9. Switched reluctance motors a disruptive traction motor technology?
6.5.10. Three ways that traction motor makers race to escape rare earths
6.6. New power electronics
6.6.1. Increased performance and complexity
6.6.2. Wide band gap semiconductors
6.7. Autonomous vehicles in mining and agricultural applications
6.7.1. Bosch “Bonirob” Germany
6.7.2. Google USA Renault France
6.7.3. Mining vehicles, autonomous: Caterpillar USA, Velodyne USA
6.7.4. Impact of Autonomous Mining Machines

LIST OF TABLES
1.1. Numbers of construction, mining and agriculture EVs, in thousands, sold globally, 2017-2027
1.2. Unit prices, ex factory, of construction, mining and agriculture EVs, in US$ thousands, globally, 2017-2027
1.3. Market value of construction, mining and agriculture EVs, in US$ billions, sold globally, 2017-2027
1.4. Comparison between passenger vehicles, heavy duty on-road vehicles and non-road mobile machinery
1.5. European emission limits for CI engines of NRMM (g/kWh). [24]
2.1. Mining Vehicles market estimate 2013 (Equipment and services)
2.2. Mining Vehicles market estimate 2013 (Equipment)
2.3. Global demand for steel, aluminium, copper and coal
2.4. Forecasts for mining electric vehicles 2014-2025
4.1. Agricultural vehicle market by company and revenue 2012-2013
4.2. Construction vehicles market estimate 2013 (Equipment and services).
4.3. Forecasts for electric construction and agricultural vehicles 2014-2025
5.1. Forecasts for heavy mobile cranes electric vehicles 2014-2025
5.2. Forecasts for indoor cranes/platform lifters 2014-2025
6.1. Some popular or researched options for lithium-ion batteries
6.2. 143 manufacturers and putative manufacturers of lithium-based rechargeable batteries with country, cathode and anode chemistry, electrolyte morphology, case type, applicational priorities and customer relationships, if any, in sel
6.3. Some common differences between the requirements of traction motors for pure electric vs hybrid electric traction vehicles
6.4. Examples of traditional limitations and market trends by type of basic design of traction motor
6.5. Summary of preferences of traction motor technology for vehicles

FIGURES
1.1. Global Prius Sales (thousand) and WTI Oil prices ($/barrel)
1.2. Rockster stone crusher
1.3. World Bank: Crude oil, $/barrel
1.4. Numbers of construction, mining and agriculture EVs, in thousands, sold globally, 2017-2027
1.5. Unit prices, ex factory, of construction, mining and agriculture EVs, in US$ thousands, globally, 2017-2027
1.6. Market value of construction, mining and agriculture EVs, in US$ billions, sold globally, 2017-2027
1.7. Grizzly robot electric vehicle for agriculture and mining
1.8. Sanyo vehicle with extending solar panels for charging when stationary and mine with electric trucks using local solar and wind
1.9. Energy and work synchronization
1.10. Bailey hybrid electric crane
1.11. Konecranes hybrid electric stacker
1.12. Pure electric manlift
1.13. Slides from Industrial Vehicle Symposium Cologne Germany November 2016
1.14. Volvo hybrid wheel loader with Volvo autonomous pure electric carrier as prototype.
1.15. Huddig hybrid wheel loader
1.16. Asia Pacific construction equipment market, by product, 2012-2020, (USD Billion) [14]
1.17. GHG emission shares for NRMM in EU-27 countries [17]
1.18. Load-Haul-Dump (LHD) cycle of an underground mining machine.
1.19. Part of a duty cycle of a straddle carrier.
1.20. Most common hybrid powertrain topologies
1.21. Commercial battery powered vehicles,
1.22. Commercial high power, electric driven work machines: Liebherr T282B Dump Truck
1.23. Commercial high power, hybrid mobile machines: Konecranes SMV 4531 TB5 HLT hybrid reach stacker
2.1. Challenges in mining
2.2. Mass, energy and information flow in mining
2.3. Average fuel prices in Canada, cents per litre
2.4. Typical mine haul truck in Canada
2.5. Haul truck cost structure in mining
2.6. The electrified open cast mine using pure electric haul trucks and rail-veyors
2.7. Economics of electric haul trucks with rail-veyors compared with conveyors
2.8. The self-powered, electrified open-cast mine with energy-work synchronisation
2.9. Pure electric light mining vehicles
2.10. A Canadian loader by Mining Technologies International, equipped with a hybrid battery-diesel supply system
2.11. Tiers 1-4 non-road emissions standards
3.1. Megatrends, regulations and other market drivers
3.2. CALSTART overview
3.3. Hitachi electric construction vehicles including hydraulic and electric hybrids.
3.4. Cummins hybrid electrification example
3.5. John Deere tractor electrification
3.6. Ricardo overview
3.7. AVL forecast for industrial and commercial electric, mild hybrid and conventional vehicles including rental cars
3.8. Tiny deployment of fuel cell forklifts
3.9. Sevcon fuel cell power electronics options offered.
3.10. Some targets for hybrid powertrains
3.11. Hitachi electrification of wheel loader
3.12. Oerlikon wheel loader approach
3.13. HUDIG hybrid wheel loader
3.14. John Deere hybrid wheel loader
3.15. Volvo connected4d machines: hybrid wheel loader with Volvo autonomous pure electric carrier as prototype and pure electric excavator.
3.16. Delphi view
3.17. Thermal management of power electronics
3.18. Lithium sulfur battery target
3.19. Ricardo traction motor overview
3.20. Konecranes using supercapacitors below
3.21. Examples of hybrid options
4.1. Example of projection of slow progress to volume production of electrically propelled agricultural vehicles
4.2. The Caterpillar 336E H is the brand's first hybrid electric excavator.
4.3. John Deere's 644 K hybrid electric loader
4.4. Mitsubishi pure electric micro-truck based on MiEV car being used in farming experiment.
4.5. Multi Tool Trac e-tractor
4.6. Anatomy of MTT tractor
4.7. Superlatives of hybrid tractor
4.8. Early stage prototypes
4.9. ECO vehicle
4.10. New Holland fuel cell tractor
4.11. Concept autonomous tractor technology developed by CHH Industrial
5.1. Forecasts for heavy mobile cranes electric vehicles 2014-2025
5.2. Mobile electric scissor lift by Wuhan Chancay Machinery and Electronics
5.3. Forecasts for indoor cranes/platform lifters 2014-2025
6.1. Voltage and other trends in pure electric vehicles
6.2. Stone crusher
6.3. The configuration of the module in the electric drive train
6.4. Fuel cell disillusion in agriculture
6.5. Second generation fuel cell tractor project
6.6. Second generation fuel cell tractor system
6.7. Comparison of standard and high speed motor suitable for vehicle traction
6.8. Choice of drive motor
6.9. Development of a model range of electric motors for agricultural machines
6.10. GaN Systems capability late 2014
6.11. Bosch's "Bonirob" agricultural robot
6.12. Bonirob can distinguish between crops and weeds
6.13. The robot is being developed at Deepfield Robotics
6.14. Laser sensor on Google prototype
6.15. Google's last prototype of self driving car
6.16. Caterpillar's Command Autonomous hauling truck
6.17. Close up of Lidar radar on Caterpillar hauling truck
6.18. Lidar captures party sequence in Radiohead's House of Cards 3D data music video
6.19. Lidar mounted in a vehicle captures out door sequence in Radiohead's House of Cards 3D data music video

Ordering:
Order Online - http://www.researchandmarkets.com/reports/4070623/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Electric Vehicles for Construction, Agriculture and Mining 2017-2027
Web Address: http://www.researchandmarkets.com/reports/4070623/
Office Code: SC2GIW3Z

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Formats</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td>USD 5010</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td>USD 5310 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td>USD 7517</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td>USD 7818 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>________________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>________________________________</td>
</tr>
<tr>
<td>City:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>________________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

- Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

- Pay by check: Please post the check, accompanied by this form, to:
 Research and Markets,
 Guinness Center,
 Taylors Lane,
 Dublin 8,
 Ireland.

- Pay by wire transfer: Please transfer funds to:
 Account number 833 130 83
 Sort code 98-53-30
 Swift code ULSBIE2D
 IBAN number IE78ULSB98533083313083
 Bank Address Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World