Electric UAV Drones: Autonomous, Energy Independent 2017-2027

Description: It is grossly misleading that most reporting on unmanned aerial vehicles UAV has recently concentrated on the sideshow of toy multicopters going out of fashion. We also are told of toy and other simple versions dropping 70% in price, with more to come, so manufacturers and investors outside China, who should have known better, are wiped out. Investment is now virtually impossible to obtain, they say.

There is a different reality. Drones are overcoming problems of direct human involvement in dirty, dangerous, slow and imprecise operations that need to be done better and they will even be used for currently impossible tasks. The analyst forecasted the price collapse of toys but also the huge opportunities in specialist hardware and most software and services elsewhere.

This report reveals a parallel universe of drones of all sizes receiving billions of dollars of investment so they and their associated services create multi-billion dollar markets in hardware and services. It is an amazing world of tethered and upper atmosphere drones staying up for years, some creating 100kW of electricity and others beaming the internet to 4.5 billion people still waiting for it. Contrary to popular opinion, the analyst reveals that the next advances in hardware and software mainly revolve around autonomy and energy independence.

Swarming theory and endowment of curiosity will transform security and other applications. Here is the only report encompassing all of this, based on new research worldwide carried out by multilingual PhD level analysts. For those wanting even more on specifics, there are related reports on robotics, electric vehicles, agribots and so on and all the reports have 30 minutes of free consultancy attached.

Here we have over 160 pages of densely packed but easily understood PowerPoint infograms, forecasts and roadmaps involving over 400 players with the most significant work identified using a profusion of images. There is an executive summary with the technology and evolving uses crisply explained followed by detailed evaluation of players, market forecasts and roadmaps. Alternative forecasts by others are also presented.

The introduction chapter looks at definitions and briefly introduces key aspects that are more fully analysed in the subsequent chapters on applications, possibilities and next technologies. However, this is not the madcap enthusiasm that mars so many other publications. Following the collapse of the toy market and commoditisation of simple drones for photography, forecasts disillusion setting in with postal delivery by drone in dense urban environments for example, giving reasons. On the other hand the report reveals many gaps in the markets that are opening up including several technologies and applications not reported in any other drone publications.

Because the analyst has carried out deep research on allied subjects such as autonomous, energy independent and electric vehicles in general and new sensor technology, this report benchmarks what is going on in other sectors.

It avoids the tunnel vision of other commentators. Learn where there are better alternatives for some drone applications but huge opportunities for others soon to be trialled, such as autonomous, helium-filled aerofoils carrying heavy freight across continents and postal drones in remote areas that avoid most of the problems by dropping parcels not landing.

How will we get the necessary ultra-efficient powertrains? What is the route to new regeneration creating on-board electricity instead of wasted heat and movement? How do we make viable the new forms of energy harvesting of ambient energy such as sun and wind? It is all here. The report ends with examples of insightful interviews recently carried out across the world.

Contents:

1. EXECUTIVE SUMMARY AND CONCLUSIONS
   1.1. Purpose of this report
   1.2. Definitions and comparison
   1.2.1. Electric UAV types
   1.2.2. Acronyms, market drivers and uses
1.3. Why electrify? What is the end game?
1.4. Why have autonomy?
1.5. Why seek autonomy of navigation, task and power together?
1.5.1. Benefits
1.5.2. Autonomy of navigation, task and energy usually happening first in the air
1.5.3. Perpetual drones
1.6. Electric UAV formats
1.7. Contrast non-electric UAVs
1.8. UAV systems
1.8.1. Anatomy
1.8.2. Military UAS system evolution to electric
1.9. Convergence of technologies and new challenges
1.10. Some operational, technical and ethical challenges of UAVs
1.11. Insurance challenges
1.12. Tightening legal constraints
1.13. UAV autonomy propositions in context of other autonomous vehicles
1.14. Companies in the drone value chain
1.14.1. Top drone company ranking Q3 2016 by interest not sales
1.15. Market forecasts
1.15.1. Six forecasting categories for electric UAV craft explained
1.15.2. 2017: Year of disillusion when savvy investors see their chance
1.15.3. 2018-2027 Many enduring successes for electric UAVs: excellent VC exits as large companies buy their way in
1.15.4. Total electric UAV market
1.15.5. Repositioning by western and Japanese suppliers: Example Parrot France 2017
1.15.6. Forecasts for six electric UAV categories 2017-2027 - Numbers
1.15.7. Forecasts for six electric UAV categories 2017-2027 - Unit Price
1.15.8. Forecasts for six electric UAV categories 2017-2027 - Market Value
1.15.9. Total electric UAV market - discussion
1.15.10. Commercial drone-enabled revenue
1.15.11. Examples of drone retail pricing excluding system
1.15.12. Agricultural robots and drones ten-year forecasts
1.15.13. Optimistic forecasts made before the 2016 industry shakeout may now be revised
1.15.14. Alternative views
1.15.15. Independent view of commercial and prosumer potential using different drone definition

2. INTRODUCTION
2.1. Terminology and value chain
2.1.1. Drone and UAV
2.1.2. UAS
2.1.3. Value chain elements
2.2. Some potentially leading applications
2.2.1. Military, agriculture etc.
2.2.2. Package delivery
2.2.3. Upper atmosphere internet delivery, surveillance
2.3. Design of electric UAVs
2.4. Ducted fan gains share: Finnmeccanica
2.4.1. New form of ducted fan with control flaps: ETH Zurich
2.5. New principles of flight
2.6. Energy storage
2.6.1. Rapid change
2.6.2. Rated power vs energy stored by technology
2.6.3. The role of energy storage technologies in electric vehicles
2.6.4. EV battery impact
2.6.5. EV lithium battery pack price to 2030
2.6.6. Lithium-ion traction battery chemistry preferences
2.6.7. New Li technology maturity per market segment
2.6.8. Forecasts of energy density by type 2016-2028
2.6.9. Rapid scale-up with rapid change of product spells trouble
2.6.10. Safety warning
2.7. Electric motors and controls
2.7.1. Brushless outrunner motors
2.7.2. Coreless motors in general
2.7.3. Overall choices of traction motor for electric vehicles
2.7.4. Motor controls
2.7.5. Sensors, other controls and functions
2.8. Autonomy of navigation and task
2.8.1. Requirements
2.8.2. Definitions: degrees of autonomy, design methodology
2.8.3. Function specific level of autonomy: Texas A&M
2.8.4. Technology options
2.8.5. Example: enhancement of commercial multicopter for autonomy
2.8.6. Example: Skybotix
2.8.7. Autonomous UAVs for agriculture
2.9. Swarming technology: Perdix

3. AUTONOMY OF UAV ENERGY: ENERGY INDEPENDENT VEHICLE EIV TECHNOLOGY
3.1. Overview and EIV drone
3.2. Solar Ship EIV helium inflatable fixed wing Canada

4. EXAMPLES OF ELECTRIC UAVS IN ACTION
4.1. Agriculture
4.1.1. Overview
4.1.2. Aerial data collection - Satellite vs. plane vs drone mapping and scouting
4.1.3. Benefits of using aerial imaging in farming
4.1.4. Unmanned drones in rice field pest control in Japan
4.1.5. Unmanned drones and helicopters for field spraying
4.1.6. Unmanned agriculture drones on the market
4.1.7. Comparing different agricultural drones on the market
4.1.8. Regulation barriers coming down?
4.1.9. Agricultural drones: the emerging value chain
4.1.10. Core company information on key agricultural drone companies
4.2. Product delivery
4.2.1. Amazon, Zipline, Swiss Post, NUS
4.2.2. Zipline
4.2.3. Disposable drones for delivery
4.3. Surveying
4.4. UAVs for guidance
4.5. Tethered UAVs for endurance or power generation
4.5.1. Aerovironment, Elistair, Univ Southampton
4.5.2. Alphabet (Google) Makani tethered drone for electricity generation
4.5.3. TwingTec
4.6. Detail of energy independent drones
4.6.1. Northrop Grumman airship USA
4.6.2. Mitre DARPA airship USA
4.6.3. Lockheed Martin HALE-D airship USA
4.6.4. Dirisolar airship France
4.6.5. Turtle airship USA
4.6.6. Brunel solar powered autonomous aircraft
4.6.7. China Aerospace

5. COMPANY PROFILES AND EXAMPLES OF INTERVIEWS
5.1. AgEagle
5.2. Agribotix
5.3. Airinov
5.4. Festo
5.5. Gamaya
5.6. Headwall
5.7. LeddarTech
5.8. MicaSense
5.9. Novariant
5.10. Parrot
5.11. Prospera
5.12. Scanse
5.13. senseFly
5.14. Sentra
5.15. Shadow Robotics
5.16. SpeIR
5.17. Trimble
5.18. URSULA Agriculture
5.19. Yanmar
5.20. Yara

Ordering:

Order Online - [http://www.researchandmarkets.com/reports/4070627/](http://www.researchandmarkets.com/reports/4070627/)

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

| Product Name: | Electric UAV Drones: Autonomous, Energy Independent 2017-2027 |
| Web Address: | http://www.researchandmarkets.com/reports/4070627/ |
| Office Code: | SC2G9PKI |

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td>☐</td>
<td>USD 5010</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td>☐</td>
<td>USD 5310 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td>☐</td>
<td>USD 7517</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td>☐</td>
<td>USD 7818 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number: 833 130 83
Sort code: 98-53-30
Swift code: ULSBIE2D
IBAN number: IE78ULSB98533083310383
Bank Address: Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World