Stretchable Electronics 2017-2027

Description: This report provides you with everything that you need to know about stretchable electronics. It provides the most comprehensive and insightful view of this diverse emerging industry, assessing more than 32 product areas, analysing more than 16 different stretchable materials/components, covering the progress of more than 87 companies and 25 research institutes including first-hand primary research on 59 companies, and giving ten-year market forecasts segmented by more than 7 application and 15 material/component areas.

This report develops a critical technology assessment for a vast array of emerging stretchable electronic materials and components. These include stretch sensors, stretchable ink-, yarn-, or wire-based interconnects, stretchable transparent conductive films, stretchable PCBs, haptics and actuators, transistors and logic, energy harvesters, batteries, supercapacitors, encapsulates, substrates, and so on. Our forecasts are segmented by 15 different stretchable component types.

This report also provides a detailed view of end use markets including healthcare & medical, automotive, consumer, sports & fitness, industrial, and so on. The ten-year forecasts are segmented by 7 key markets and at least 7 product types such as robotics, apparel textiles, non-apparel textiles, skin patches, and so on.

Technology insight and business intelligence based on years of primary research

This report is the result of years of global primary research on stretchable electronics itself, but also on its constituent elements and target applications. Our analysts, for example, have been covering conductive inks, in-mold electronics, electronic textiles, flexible/stretchable printed circuit boards, wearable technologies, stretchable sensors, stretchable transparent conductive films, and structural electronics and so on.

In the past three years alone, we have met and/or interviewed at least 60 companies active in the value chain of stretchable electronics, attended more than 15 conferences/tradeshows across the world where stretchable electronic products were discussed/exhibited, and delivered multiple tailored consulting projects.

In addition, for the past decade, we have been organising the Show!, a business-focused bi-annual conference and tradeshow focused on electronics with new form factors. This show has given us a window to stay connected with the leading players as the industry has evolved.

Stretchable Electronics: enabling the future of electronics

The electronic industry is in the midst of a major paradigm shift: novel form factors are emerging ranging from limited flexibility to ultra-elastic and conformable electronics. This transfiguration has, of course, been in the making for more than a decade now, but it is only now that it is beginning to make a substantial commercial impact.

This shift is not an incremental or a sustaining technology that furthers technology performance along well-established industry lines. Instead, it seeks to create new functions, new applications, and new users. As such, this technology frontier currently only has vague figures-of-merit and limited insight on customer needs.

Indeed, many opponents have long argued that this entire class of emerging materials/devices is a classic case of technology-push, a solution looking for a problem. This view may have been right in the early days, but we now see this trend as an essential step towards the inevitable endgame of new electronics: structural electronics.

Structural electronics is a disruptive megatrend that will transform traditional electronics from being components-in-a-box into truly invisible electronics that part of the structure. This is a major long-term innovation that we lead to a root-and-branch change of the electronic industry including its value chain, its materials, its components, and so on. Stretchable and conformable electronics is giving shape to this megatrend. Indeed, it enables it.
Out of the lab and into the market

Stretchable Electronics is an umbrella term that conceals great diversity. It refers to a whole host of emerging electronic materials, components and devices that exhibit some degree of mechanical stretchability. These include interconnects, sensors, actuators, functional films, batteries, logic, displays and so on. It is therefore an emerging technology frontier that simply cannot be painted with a broad brush.

In fact, this emerging frontier covers diverse technologies, each sitting on a different point on the technology/market readiness spectrum. Indeed, some stretchable electronics components are on the cusp of entering the markets, whereas several others are still in the proof-of-concept stage. We expect that this technology frontier will soon fragment, with some constituents becoming successful commercial stories, whilst others remain largely an academic curiosity.

This ship is beginning to sail now. Indeed, we anticipate that in many cases the winners will emerge within the next 3-5 years. This is why companies now need to urgently establish a closer collaboration between their commercial and research units, and should follow a strategy of touching upon as many nascent application spaces as their bandwidth allows to garner feedback, offer customized solutions, and fine-tune their research direction.

In this report we provide a critical assessment of all the existing and emerging technologies. You will learn about the technology readiness levels, latest performance levels, unsolved technical challenges, late-stage or commercial prototypes, and so on. You will also learn about the emerging global business ecosystem pushing each technology.

Contents:

1. EXECUTIVE SUMMARY
 1.1. The evolving form factor of electronics
 1.2. Technology Readiness Chart: by technology
 1.3. Number of products containing stretchable electronics, by market sector (2017-2027)
 1.4. Number of products containing stretchable electronics, by product type (2017-2027)
 1.5. Sales volumes of stretchable components (2017-2027)
 1.6. Revenue from stretchable materials & components, (2017-2027)
 1.7. Stretchable electronics in e-textiles

2. INTRODUCTION
 2.1. Definitions and inclusions
 2.2. Stretchable electronics: Where is the money so far?
 2.3. Why do we need stretchable electronics?
 2.3.1. Characterising a stretchable substrate
 2.3.2. Conformal electronic functionality on custom shapes
 2.3.3. Smart skin
 2.4. Megatrends
 2.5. The megatrend towards ubiquitous electronics
 2.6. Our ubiquitous electronics will be stretchable
 2.7. Technology Readiness Chart: by technology

3. STRETCHABLE ELECTRONIC TEXTILES (E-TEXTILES)
 3.1. Electronic Textiles (E-Textiles)
 3.2. Most conductive fibres are not stretchable (with exceptions)
 3.3. Examples of traditional conductive fibres
 3.4. Academic exceptions:
 3.4.1. UT, Dallas: SEBS / NTS stretchable wires
 3.4.2. Sungkyunkwan University - PU & Ag nanoflowers
 3.4.3. MIT: Stretch sensors using CNTs on polybutyrate
 3.5. Yarns for stretchable electronics
 3.6. Commercial wire-based stretchable yarns
 3.7. Hybrid yarns can be conductive, elastic and comfortable
 3.8. Conductive yarns from Natural Fibre Welding
 3.9. Stretchable electronic fabrics
 3.10. Examples of stretchable electronic fabric components
 3.11. Stretchable fabrics in e-textiles today
 3.12. Design trends to accommodate stretchable electronics
4. STRETCHABLE CONDUCTIVE INKS
4.1. Stretchable inks: general observations
4.2. Stretchable conductive inks on the market (Jujo Chemical, Ash Chemical, EMS/Nagase, Toyobo, DuPont, Henkel, Panasonic, Taiyo, Cemedine, and so on)
4.3. Performance of stretchable conductive inks
4.4. Evolution and improvements in performance of stretchable conductive inks
4.5. The role of particle size and resin in stretchable inks
4.6. The role of pattern design in stretchable conductive inks
4.7. Washability for stretchable conductive inks
4.8. Encapsulation choice for stretchable inks
4.9. The role of the encapsulant in suppressing resistivity changes
4.10. The role of a common substrate for stretchable inks in e-textiles
4.11. Graphene-based stretchable conductive inks
4.12. Graphene heaters in electronic textiles
4.13. Examples of stretchable conductive inks in e-textiles
4.14. Examples of e-textile sports products made using conductive yarns
4.15. PEDOT-impregnated fabric for e-textiles
4.16. CNT heaters for photovoltaic defrosting

5. IN-MOLD CONDUCTIVE INKS
5.1. In-mold electronics: processes and requirements
5.2. Stretchable conductive inks for in-mold electronics
5.3. In-mold electronics: a multi-step process
5.4. Target applications for in-mould electronics
5.5. In-mold conductive inks on the market
5.6. Product examples using in-mold conductive inks
5.7. Printed and thermoformed overhead console

6. STRETCHABLE AND IN-MOLD TRANSPARENT CONDUCTIVE FILM
6.2. Stretchable carbon nanotube transparent conducting films
6.3. Product examples of carbon nanotube in-mold transparent conductive films
6.4. PEDOT transparent conductive films
6.5. Product examples of in-mold and stretchable PEDOT:PSS transparent conductive films
6.6. Metal mesh transparent conductive films: operating principles and characteristics
6.7. Methods of making metal mesh transparent conductive films: hybrid printing and silver halide patterning
6.8. Methods of making metal mesh transparent conductive films: direct printing and embossing
6.9. Methods of making metal mesh transparent conductive films: photolithography
6.10. In-mold and stretchable metal mesh transparent conductive films
6.11. Stretchable silver nanowire transparent conductive films
6.12. Other in-mold transparent conductive film technologies

7. SUBSTRATES FOR STRETCHABLE ELECTRONICS
7.1. Substrate choice for stretchable electronics
7.2. Panasonic's stretchable insulating resin film with electronic circuits

8. STRETCHABLE SENSORS
8.1. Introduction
8.2. High-strain sensors (capacitive)
8.3. Use of dielectric electroactive polymers (EAPs)
8.4. Players with EAPs
8.4.1. Parker Hannifin
8.4.2. Stretchsense
8.4.3. Bando Chemical
8.5. Other force sensors (capacitive & resistive)
8.6. Force sensor examples:
8.6.1. Polymatech
8.6.2. Sensing Tex
8.6.3. Vista Medical
8.6.4. InnovationLab
8.6.5. Tacterion
8.6.6. Yamaha and Kureha
8.6.7. BeBop Sensors
8.7. Stretchability within skin patch sensors
8.8. Example: Stretchability in chemical sensors
8.9. Example: Stretchability in body-worn electrodes
8.10. Academic examples:
 8.10.1. UNIST, Korea
 8.10.2. Stanford University
 8.10.3. Bio-integrated electronics for cardiac therapy
 8.10.4. Instrumented surgical catheters using electronics on balloons
 8.10.5. Chinese Academy of Sciences

9. THERMOFORMED POLYMERIC ACTUATOR
9.1. Thermoformed polymeric actuator?

10. ENERGY STORAGE: STRETCHABLE BATTERIES AND SUPERCAPACITORS
10.1. Realization of batteries’ mechanical properties
10.2. Material-derived stretchability
10.3. Comparison between flexible and traditional Li-ion batteries
10.4. Device-design-derived stretchability
10.5. Cable-type battery developed by LG Chem
10.6. Electrode design & architecture: important for different applications
10.7. Large-area multi-stacked textile battery for flexible androllable applications
10.8. Stretchable lithium-ion battery - use spring-like lines
10.9. Foldable kirigami lithium-ion battery developed by Arizona State University
10.10. Fibre-shaped lithium-ion battery that can be woven into electronic textiles
10.11. Fibre-shaped lithium-ion battery that can be woven into electronic textiles (continued)
10.12. Stretchable Supercapacitors
10.13. Stretchable energy harvesting
10.14. Stretchable capacitive energy harvesting upto 1 kW?
10.15. Stretchable triboelectric energy harvesting
10.16. Piezoelectric nano-generators

11. STRETCHABLE OR EXTREMELY FLEXIBLE CIRCUITS BOARDS
11.1. Stretchable or extremely flexible circuit boards (Reebok)
11.2. Examples of thin and flexible PCBs in wearable and display applications
11.3. Examples of thin and flexible PCBs in various applications
11.4. Printed pliable and stretchable circuit boards
11.5. Stretchable meandering interconnects
11.6. Stretchable printed circuits boards
11.7. Examples of fully circuits on stretchable PCBs
11.8. Stretchable Electronics from Fraunhofer IZM
11.9. Stretchable actually-printed electronic circuits/systems
11.10. Island approach to high-performance stretchable electronics
11.11. Examples

12. STRETCHABLE DISPLAYS
12.1. Stretchable displays
12.2. Hyper-stretchable HLEC display
12.3. Stretchable electrophoretic display

13. STRETCHABLE TRANSISTORS
13.1. Stretchable thin film transistors
13.2. Crystalline stretchable high-performance circuits
13.3. Examples of crystalline stretchable high-performance circuits
13.4. Latest progress with electronic skin
13.5. Artificial skin sensors based on stretchable silicon
13.6. Stretchable LED lighting arrays
13.7. Ultra-thin flexible silicon chips
13.8. Ultra thin silicon wafers: top-down thinning
13.9. Ultra thin silicon wafers: Silicon-on-Insulator
13.10. Ultra thin silicon wafers: ChipFilmTM approach
14. MARKETS
14.1. Key markets for stretchable electronics
14.2. Comparison by product type
14.3. Skin patches
14.4. Apparel
14.5. Other textile applications
14.6. Medical devices
14.7. Consumer electronic devices
14.8. Market pilots with early prototypes
14.9. The EC STELLA project
14.10. Pressure monitoring in an insole
14.11. Compression garments
14.12. Wireless activity monitor

15. FORECASTS
15.1. Stretchable electronics in e-textiles
15.2. Number of products containing stretchable electronics, by market sector (2017-2027)
15.3. Number of products containing stretchable electronics, by product type (2017-2027)
15.4. Sales volumes of stretchable components (2017-2027)
15.5. Revenue from stretchable materials & components, (2017-2027)
15.6. Revenue breakdown: stretchable conductive materials, including inks, textiles & polymers (2017-2027)
15.7. Revenue breakdown: mold inks and TCF (2017-2027)
15.8. Revenue breakdown: stretchable sensors, including dielectric elastomer, resistive displacement, textile & other (2017-2027)
15.9. Revenue breakdown: stretchable energy storage and energy harvesting (2017-2027)
15.10. Revenue breakdown: emerging stretchable components, including actuators, logic and displays (2017-2027)

16. COMPANY PROFILES AND INTERVIEWS
16.1. Adidas
16.2. Aiq Smart Clothing
16.3. Bebop Sensors
16.4. Cityzen Sciences
16.5. Directa Plus
16.6. Dupont Advanced Materials
16.7. Eurecat - Cetemmsa
16.8. Footfalls And Heartbeats
16.9. Forster Rohner Ag
16.10. Fujikura Kasei Co., Ltd.
16.11. Henkel
16.12. Henkel - Conductive Adhesives
16.13. Hexoskin
16.15. Kh Chemicals
16.16. Nagase America Corporation
16.17. Poly-Ink
16.18. Polymatech America Co., Ltd.
16.20. Stretchsense
16.21. Wearable Life Science
16.22. Xerox Research Centre Of Canada (Xrcc)

17. APPENDIX
17.1. List of 25 universities mentioned in this report
17.2. List of 87 companies mentioned in this report

18. COMPANY INTELLIGENCE BASED ON PRIMARY FIRST-HAND INTERVIEWS
18.1. Agfa
18.2. Alphaclo
18.3. Asahi Kasei
18.4. Ash Chemical
18.5. Bainisha
18.6. Bando Chemical
18.7. Bebop Sensors
18.8. Brewer Science
18.9. Canatu
18.10. Cemedine
18.11. Chasm
18.12. Clothing+
18.13. DuPont
18.14. EMS
18.15. EnFlux
18.16. FEET ME
18.17. Flexeed
18.18. Forster Rohner Textile Innovations
18.19. Fraunhofer IZM
18.20. Fujifilm
18.21. Fujikura Kasei
18.22. Henkel
18.23. Heraeus
18.24. Hexoskin
18.25. Hitachi Chemical
18.26. Holst Centre
18.27. Imperial College London
18.28. Innovation Lab
18.29. Jujo Chemical
18.30. Kureha
18.31. MC10
18.32. Mektec
18.33. Molex
18.34. Nagase
18.35. NC State University
18.36. NRCC
18.37. Ohmatex
18.38. Panasonic
18.39. Parker Hannifin
18.40. Piezotech
18.41. Polymatech
18.42. Sabic
18.43. Satosen
18.44. Sensing Tex
18.45. Seoul National University
18.46. Showa Denko
18.47. Soongsil University
18.48. Stretchsense
18.49. Tacterion
18.50. Tactotek
18.51. Taiyo Ink
18.52. Textronics
18.53. T-Ink
18.54. Toray Industries
18.55. Toyobo
18.56. University of Tokyo
18.57. Vista Medical
18.58. Wearable Life Sciences
18.59. Yamaha

Ordering:

Order Online - http://www.researchandmarkets.com/reports/4070631/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Stretchable Electronics 2017-2027
Web Address: http://www.researchandmarkets.com/reports/4070631/
Office Code: SC

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Electronic (PDF) - 1 - 5 Users:</th>
<th>USD 5564</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td>USD 5868 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td></td>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td>USD 8320</td>
</tr>
<tr>
<td></td>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td>USD 8635 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:	Mr	Mrs	Dr	Miss	Ms	Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World