This unique commercially oriented report has 180+ pages packed with detailed market and technical analysis with many new infograms, conference slides, roadmaps and ten year forecasts 2017-2027. It is based on global research by PhD level multi-lingual analysts in 2016-7 with frequent updates. The Executive Summary and Conclusions is insightful, detailed yet easily assimilated.

An introduction gives an overview of the background and technologies with a frank assessment of why most manufacturers and analysts have been over-optimistic about the use, though not always the deployment of these systems in the past and the significance for the future of new capabilities such as long range phone charging. Other chapters embrace the different applications, technologies and roadmaps.

The report primarily discusses mobile phone and electric cars charging but showing how much the same arguments apply to many electrical and electronic goods, particularly mobile ones. Most analysts forecasting sales of contactless charging systems for phones and pure electric cars have over-estimated both over the last 15 years. In response to customer demands, may other aspects were being fixed first. People wanted better features and more of them with their phones, larger screens and so on.

Electric cars were held back by range anxiety, high up front price, poor resale price and the need to change driver behaviour such as driving more carefully and finding and using charging stations, usually incompatible ones with a profusion of different payment methods and Tesla ones banned to anyone else. These impediments are gradually being overcome so consumer needs relevant to wireless charging come nearer to the top nowadays. Beware though. The report exposes how the charging needs and solutions for phones and the like have important differences from the needs and uses for vehicles and contentiously, it translates this into value sales for electric vehicles overtaking those for phones within the decade.

The report is extremely comprehensive. It looks at the activities of many developers and manufacturers and their potential customers and users. The enthusiasm of suppliers shown in new interviews is tempered by twenty years of experience for the analyst and new opinion from key companies such as Ford assessing the technology in 2017. Having recently researched reports on Fuel cell vehicles, energy independent electric vehicles, better batteries, better energy harvesting phones and robot chargers render wireless charging unnecessary.

The analyst is best placed to provide a balanced view of each because we have researched reports on all these subjects recently. Indeed the analyst stages conferences and exhibitions on these aspects and the core topic of wireless charging so the report contains slides and answers from interested parties that are not generally available. This report is no cut and paste from the web but it does contain some forecasts of others for comparison with the new analysis.

The report reveals how mobile phone users do not want contactless charging as such but rather they need ubiquitous charging without carrying a charger around or better still, no loss of use through lack of charge. It contrasts electric vehicles where the act of plugging in public places can he a physical strain, dirty and dangerous but the environment is more challenging with roads being dug up, animals getting irradiated and ground clearance varying greatly and obscuration a problem.

However, the reader can form their opinion based on inputs from all parts of the value chain and from other interested parties. To dig deeper on certain aspects, the analyst has many new reports and consultancy services on allied topics such as post-lithium batteries, extreme lightweighting and wearable electronics.

Contents:
1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Definition and overview
 1.2. Wireless charging for portable electronics
 1.3. Situation in 2017
 1.3.1. Mobile phones, other portable electronics, electrical goods
 1.3.2. Cars and other vehicles
 1.4. Technology roadmap and market forecasts 2017-2027
1.4.1. Technology roadmap 2017-2027
1.4.2. Market forecasts electrical, electronic, electric vehicle WC 2017-2027
1.4.3. Developers and manufacturers
1.4.4. Regional trends
1.4.5. Background information from other analysts
1.4.6. Addressable markets
1.4.7. Global smart phone shipments 2006-2021 billions
1.4.8. Electric vehicle forecasts 2017-2027
1.5. Technology
1.6. Technical options for static WC
1.7. Dynamic charging
1.8. Market dynamics
1.8.1. Market sweet spot
1.8.2. Market dynamics

2. INTRODUCTION
2.1. Main trends
2.2. Charging phones vs charging cars: comparison in 2017
2.2.1. Phones
2.2.2. Cars
2.3. History
2.4. Wireless power transfer
2.4.1. Adoption - who wins
2.5. Qi the winning specification for personal electronics - so far
2.6. AirFuel Alliance
2.7. Apple and Qi
2.8. Wireless vehicle charging

3. WIRELESS CHARGING OF PORTABLE ELECTRONIC DEVICES
3.1. Main trends
3.2. Misleading terminology
3.3. Challenges
3.4. Real problems
3.5. Energous and Apple
3.6. Ossia Cota
3.7. Wi-Charge
3.8. WiTricity

4. WIRELESS CHARGING FOR VEHICLES WHEN STATIONARY
4.1. Introduction
4.2. Standards for vehicle WC
4.3. Recent activity
4.3.1. BMW, Germany Nanyang Singapore
4.3.2. Evatran for Tesla, Nissan, Chevrolet
4.3.3. Fraunhofer wireless discharging, lightweighting, dynamic
4.3.4. Hyundai-Kia Korea: Mojo USA
4.3.5. Oak Ridge National Laboratory’s 20-kilowatt wireless charging for electric vehicles
4.3.6. PRIMOVE Belgium
4.3.7. Yutong and ZTE China

5. DYNAMIC CHARGING OF VEHICLES
5.1. Introduction
5.2. Road maintenance concerns
5.3. Semi dynamic charging
5.4. Fully dynamic charging
5.4.1. TDK Japan
5.4.2. Drayson Racing UK
5.4.3. Korea Advanced Institute of Science and Technology
5.4.4. University of Tokyo Japan
5.4.5. Utah State University USA
5.5. Timeline
5.5.1. Volvo Sweden
5.6. Potential for new forms of static energy harvesting power dynamic charging
5.6.1. Airborne Wind Energy AWE
5.6.2. Favoured technologies
5.6.3. Billions in Change
5.6.4. EnerKite Germany
5.6.5. Google Makani USA
5.6.6. e-Wind USA
5.6.7. TwingTec Switzerland
5.6.8. Ampyx Power Netherlands
5.6.9. Altaeros USA
5.6.10. Kitemill Norway
5.6.11. Kitegen Italy
5.6.12. Commercialisation targets
5.6.13. Assessment
5.6.14. ABB assessment
5.7. Energy harvesting shock absorbers
5.7.1. Linear shock absorbers
5.7.2. Rotary shock absorbers
5.7.3. Tenneco Automotive Operating Company USA
5.8. Witt Energy UK
5.9. Photovoltaic harvesting
5.9.1. Flexible, conformal, transparent, UV, IR
5.9.2. Technological options
5.9.3. Principles of operation
5.9.4. Options for flexible PV
5.9.5. Many types of photovoltaics needed for harvesting
5.9.6. Spray on power for electric vehicles and more
5.9.7. New world record for both sides-contacted silicon solar cells
5.10. Powerweave harvesting and storage e-fiber/ e-textile
5.11. Solar roads find many uses

6. ALTERNATIVES TO WIRELESS CHARGING FOR VEHICLES
6.1. Electric vehicles that are never charged externally
6.1.1. Introduction
6.1.2. Options for energy autonomous vehicles
6.2. Robotic charging
6.3. Gantries and catenaries
6.4. Robot arms
6.4.1. DBT-CEV France
6.4.2. PowerHydrant USA
6.4.3. Tesla solid metal snake USA
6.4.4. Volkswagen Germany
6.5. Energy Independent Electric Vehicles EIV

7. EXAMPLES OF INTERVIEWS
7.1. BYD China
7.2. Hevo Power USA, WAVE USA, WiTricity USA
7.3. Idaho State Laboratory USA
7.4. Infineon USA/Germany
7.5. PowerHydrant USA
7.6. Qualcomm USA
7.7. University of Tokyo, Japan
7.8. WiTricity USA
7.9. XALT Energy USA

LIST OF TABLES
1.1. Wireless charging vs charging with contacts for powering electronic and electrical devices.
1.2. Wireless power technologies by emission type, characteristics. Green is greatest use and potential.
1.3. Wireless charging vs energy harvesting winner by power: the next 30 years
1.4. Technology roadmap 2017-2027
1.5. Electric toothbrushes and other electric devices WC
1.6. Mobile phones and other electronic devices WC
1.7. Electric vehicle WC
1.8. Electric vehicle forecasts 2017-2027 - Numbers
1.9. Market dynamics of low vs high power static WC
2.1. Wireless power transfer technologies
5.1. Comparison of pn junction and photoelectrochemical photovoltaics
5.2. The main options for photovoltaics beyond conventional silicon compared
5.1. Wurth Texas Instruments demonstrator transmitter and receiver
1.2. Wireless charging forecasts compared
1.4. Electric vehicle forecasts 2017-2027 - Numbers
1.5. Basic one-on-one WC
1.6. Qualcomm vision
1.7. Vision for clean electricity from free ambient energy powering semi-dynamic and dynamic charging at point of use
1.8. The trends of power needs and use of energy harvesting and wireless charging to meet them, shown as a function of power requirement
3.1. Why we need wireless charging
3.2. WPC situation September 2015
3.3. WPC adoption forecast
3.4. Innovation with Qi
3.5. WPC program to have a longer range option by end 2015.
3.6. Comparison of options
3.7. Multi-standard solutions
3.8. Regulatory perception and Qi low frequency compared with higher frequency proposed by others.
3.9. The big picture
4.1. Proliferation of power electronics in EVs. Newer additions shown in large font
4.2. WiTricity slide on standards bodies collaborating to create a single compatible vehicle set for WC
4.3. Evatran transmitter
4.4. Oak Ridge National Laboratory’s 20-kilowatt wireless charging system features 90 percent efficiency
4.5. The new electric buses in Bruges, Belgium
5.2. Priority lane dynamic charging
5.3. KAIST OLEVs
5.4. Dynamic and static charging of the On Line Electric Vehicle OLEV bus servicing the KAIST campus in Daejon Korea.
5.5. Proximity charged tram
5.6. Test track schematic
5.7. Test track ghost diagram
5.8. AWE conference
5.9. View of AWE risks
5.10. E-kite ground station
5.11. EnerKite presentation
5.12. Google Makani M600 prototype
5.13. e-Wind proposition hiring land from farmers
5.14. TwingTec USP
5.15. Ampyx slides - examples
5.16. Altaeros presentation
5.17. Altaeros BAT airborne wind turbine compared
5.18. Kitemill presentation
5.19. Kitegen kite providing supplementary power to a ship
5.20. ABB assessment
5.21. Tether drag solution
5.22. Power potential of energy harvesting shock absorbers
5.23. Energy harvesting shock absorbers being progressed by the State University of New York
5.24. Tufts University and Electric Truck energy harvesting shock absorbers
5.25. Wattshocks electricity generating shock absorber
5.26. Wattshocks publicity
5.27. On-road test SUV
5.28. Witt presentation
5.29. Kopf Solarshiff pure electric solar powered lake boats in Germany and the UK for up to 150 people
5.30. NREL adjudication of efficiencies under standard conditions
5.31. Powerweave
5.32. Solar roads
6.1. Examples of vehicles with solar traction power and no need for charging
6.2. Proliferation of actual and potential energy harvesting in land vehicles
6.3. Proliferation of actual and potential energy harvesting in marine vehicles
6.4. Proliferation of actual and potential energy harvesting in airborne vehicles
6.5. Examples of gantry charging for buses. Top ABB TOSA, next Proterra.
6.6. PowerHydrant presentation
6.7. Tesla solid metal snake
6.8. Examples of EIVs that never need charging from external electric sources.
7.1. WAVE bus system
7.2. Range difficulties with pure electric industrial vehicles
7.3. Proterra view on WC vs other charging of buses today.
7.4. Qualcomm positioning
7.5. Qualcomm car coils
7.6. WiTricity overview
7.7. WiTricity IP position
7.8. Key extracts from the WiTricity presentation

Ordering:

Order Online - http://www.researchandmarkets.com/reports/4070632/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name:	Wireless Charging 2017-2027: Phones, Cars etc.
Web Address:	http://www.researchandmarkets.com/reports/4070632/
Office Code:	SC2GLUDD

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price/Shipping/Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td>USD 4007</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td>USD 4307 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td>USD 6013</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td>USD 6313 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ___________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World