Large Volume Wearable Injectors Market (3rd Edition), 2017-2027

Description: Drug delivery systems optimized to provide flexibility in dosing regimen, reduce the number of hospital visits, decrease dependence on healthcare professionals and enhance adherence to the therapeutic regimen have become the preferred choice of drug administration.

The large scale adoption of prefilled syringes, the first ready-to-use injection device to be marketed, demonstrated the growing interest in the concept of such convenient drug delivery systems. In addition, several pen-injectors and autoinjectors have witnessed an impressive growth in the recent past. However, these hand-held devices are only capable of administering drugs with dosing volume close to 1 ml. With over 900 biologics being developed (most of these are highly viscous and are required to be delivered in volumes greater than 1 ml), there is a growing demand for self-administration devices than can overcome this unmet need.

Large volume wearable injectors, an advanced version of the existing self-injection devices, are expected to gather interest from a wide customer base. In fact, there are a number of such injectors commercially available for delivery of insulin. OmniPod, from Insulet Corporation, is a very well-known device that has generated significant year-on-year revenue growth. However, it is worth highlighting that till date only one large volume wearable injector (SmartDose Electronic Wearable Injector) has been approved for administration of a non-insulin biologic. Despite the uncertainties related to the device development and approval, many companies are investing their time, money and resources to develop these novel devices. In addition to the publically known programs, pharma companies have many undisclosed programs that are likely to provide the necessary growth impetus in the long term.

It is worth noting that the VC community has demonstrated significant interest in funding projects related to such wearable injectors. These investments are expected to drive further innovation and lead to the introduction of novel device candidates in the industry. Quite recently, in January 2017, scPharmaceuticals closed a series B investment round worth USD 45.6 million. The company intends to use the funding to bring Furoscix and the sc2Wear Infusor to the market in the US. Earlier, in July 2016, SteadyMed Therapeutics raised USD 32 million in a private placement round financed by Deerfield Capital Management, Federated Investors and OrbiMed. In September 2015, CeQur completed a USD 100 million Venture (Series C) financing round, which was led by Woodford Investment Management, Arthurian Life Sciences, Endeavour Vision, VI Partners and Schroders.

Several partnerships have also been inked in this domain in the last few years. Most of these are focused on the development/commercialization of a variety of wearable injectors. Such partnerships are important for technological integration, supply of devices and also facilitate the conduct of clinical trials related to drug-device combination products. We believe that the device developers will continue to strive to introduce unique and user-friendly features into their proprietary range of devices. The upgradation of existing devices to more competent/next generation devices will serve as a key driver of immediate near-term growth.

The "Large Volume Wearable Injectors Market (3rd Edition), 2017-2027" report features an extensive study of the current landscape and the likely future evolution of this category of drug delivery devices over the next ten years. With the increasing incidence of chronic and lifestyle-related diseases across the globe, the demand for efficient drug delivery systems is growing at a rapid pace. In order to simplify the process of drug delivery, eliminate costs and reduce the incidence of needlestick injuries, the pharmaceutical industry has shifted its focus towards the development of self-injection devices for parenteral drugs/therapies. This report specifically lays emphasis on the emergence of such patient-centric, convenient, cost-effective and user-friendly wearable injectors that are capable of administering large volumes of a drug subcutaneously in a home-care setting.

It is worth noting that the concept behind such injectors is being widely employed for the delivery of insulin. Over 15 such unique series of injectors (excluding variants) have already entered the market. On the other hand, there is only one large volume wearable injector (mentioned above) approved for the administration of a non-insulin biologic in the US. However, with a variety of biologics under investigation, we believe that device developers have a significant opportunity waiting to be tapped. The field is likely to pick up momentum in the next few years. In fact, an increase in the partnerships and investment activities demonstrate that the market is geared towards significant growth in the mid to long term.
One of the key objectives outlined for the study was to evaluate the future potential of the ongoing development programs of both big and small firms. Among other elements, the report elaborates on the following areas:

- An overview of the current market landscape in terms of the key players involved, development status of pipeline products (marketed/under development), type of dose (bolus/continuous/both), usability (disposable/reusable) and key indications.
- Detailed profiles of large volume wearable devices that are being developed for the delivery of biologics (including insulin), highlighting their key features, current status of development, recent developments and associated collaborations.
- An exhaustive review of over 300 biologics, which are potential candidates for delivery using large volume wearable injectors. The molecules/therapies have been categorized into most-likely, likely and less-likely candidates for administration using large volume wearable injectors. This categorization is based on various parameters including recommended volume, route of administration, frequency of the dose, standard/weight based dose and the chronicity of target indication.
- Comprehensive case studies on drugs that are being evaluated for delivery via large volume wearable injectors, highlighting their specifications, mechanisms of action, current status of development, sales, respective dosages and any other recent developments.
- An illustrative grid representation of the devices based on the category of device (insulin/non-insulin biologic), type of dose and type of device (infusion pump/patch pump). In addition, the report includes an insightful 2 X 2 matrix analysis, highlighting the positioning of the devices based on product competitiveness and supplier power.
- A discussion on the key drivers and challenges, in terms of the strengths, weaknesses, opportunities and threats (SWOT), which are likely to impact the future growth of this upcoming area.

The study provides a detailed market forecast and opportunity analysis for the period between 2017 and 2027. The research, analysis and insights presented in this report include potential sales of the drug-device combinations that are being evaluated and are anticipated to enter the market in the next few years. To add robustness to our model, we have provided three market forecast scenarios, namely the conservative, base and optimistic scenarios. It is worth noting that, although the market of insulin delivery devices is relatively more mature, we have included a high-level opportunity analysis on the large volume wearable injectors being developed for delivery of insulin as well.

Our opinions and insights presented in this study were influenced by discussions conducted with several experts in this area. Specifically, we solicited the opinions of senior representatives including Menachem Zucker (VP and Chief Scientist, Elcam Medical), Michael Hooven (CEO, Enable Injections), Ben Moga (President, Ratio Drug Delivery), Pieter Muntendam (President and CEO, scPharmaceuticals), Graham Reynolds, (VP and GM, Biologics, West Pharmaceutical Services) and Tiffany H. Burke (Director, Global Communications, West Pharmaceutical Services). All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. The financial figures mentioned in this report are in USD, unless otherwise specified.

Example Highlights

- There are over 50 different large volume wearable injectors (including variants) that are either commercialized or are under development. Of these, around 60% are for delivery of insulin and the rest are for delivery of other biologics. Of the devices being developed for delivery of non-insulin biologics, SmartDose Electronic Wearable Injector (by West Pharmaceutical Services) has already received approval by the USFDA for delivery of Repatha.
- There are several other known references of drug-device combinations that are being evaluated in clinical studies; examples include SteadyMed Therapeutics' PatchPump (with Treprostinil and Ketorolac), NeuroDerm's CRONO ND (with NDO612 and NDO712), Roche's Single-use injection device (with Herceptin) and scPharmaceuticals's scWear Infusor (with Ceftriaxone and Furosemide).
- The commercially available insulin-based large volume wearable injectors can accommodate volumes of up to 5 ml. OmniPod, from Insulet Corporation, is a very well-known device that has generated significant year-on-year revenue growth. However, with improved design, several devices with capacity of holding up to 20 ml drug are being developed for delivery of biologics. In fact, over 50% of the devices that we identified for administration of non-insulin biologics have the capability of carrying 5-20 ml drug while 16% of these devices can hold over 20 ml drug.
- Our analysis suggests that close to 100 biologics (marketed/under development) are suited for delivery via large volume wearable injectors and are likely to be evaluated in different drug-device combinations in the near future. These biologics (full list available in the main report) are designed for treatment of chronic
conditions, which require frequent dosing, and are not currently available in suitable self-administration systems. We believe that some of these drugs, if tested and approved with large volume wearable injectors, are likely to make a substantial contribution to the market's evolution in the mid-long term.
- Innovation in the field is primarily being driven by start-ups/small companies; examples of firms working for delivery of non-insulin biologics include (in alphabetical order) Elcam Drug Delivery Systems, Enable Injections, NeuroDerm, scPharmaceuticals, Sensile Medical. Notable examples of start-ups that have taken initiatives for delivery of insulin include Cellnovo, CeQu, Debiotech, PicoSulin, SOOIL and ViCentra. In addition, a number of large companies are making notable contribution in this field; prominent players include Becton Dickinson, Johnson & Johnson, Medtronic, Roche and West Pharmaceutical Services.
- Several other companies engaged in this domain have reported positive clinical outcomes of their drug-device combinations. scPharmaceuticals is expecting the commercial launch of its two product candidates for the drugs furosemide and cephalosporin in 2017/18. In addition, Neuroderm and SteadyMed Therapeutics are also hopeful of making their products commercially available in the near future. At the same time, insulin delivery devices, such as OmniPod, are now also being explored for the delivery of non-insulin drugs, such as the gonadotropin-releasing hormone developed by Ferring Pharmaceuticals.
- The overall market for large volume wearable injectors is likely to grow at an aggressive rate of over 150%. We believe that OmniPod will continue to lead the market for insulin delivery. However, majority of the growth is likely to come from drug-device combinations under trials for non-insulin biologics. In our base scenario, we have predicted that the annual sales volume of such devices could be over 40 million units by 2027.

Contents:
1. PREFACE
 1.1. Scope of the Report
 1.2. Research Methodology
 1.3. Chapter Outlines
2. EXECUTIVE SUMMARY
3. INTRODUCTION
 3.1. Chapter Overview
 3.2. Drug Delivery Devices
 3.3. Self-Administration: An Emerging Trend
 3.3.1. Rising Burden of Chronic Diseases
 3.3.2. Need for Immediate Treatment in Emergency Situations
 3.3.3. Expansion of Injectable Biologics Pipeline
 3.3.4. Systems Available for Self-administration
 3.3.4.1. Prefilled Syringes
 3.3.4.2. Pen-Injectors
 3.3.4.3. Autoinjectors
 3.3.4.4. Needle-Free Injectors
 3.3.4.5. Large Volume Wearable Injectors
 3.3.5. Needlestick Injuries
 3.3.5.1. Incidence and Cost Burden
 3.3.5.2. Prevention of Needlestick Injuries
 3.3.5.3. Government Legislations for the Prevention of Needlestick Injuries
 3.4. Advantages and Future Prospects of Self-Injection Systems
4. LARGE VOLUME WEARABLE INJECTORS: MARKET LANDSCAPE
 4.1. Chapter Overview
 4.2. Large Volume Wearable Injectors: Overall Development Landscape
 4.3. Large Volume Wearable Injectors: Development Landscape for Non-Insulin Biologics
 4.3.1. Distribution by Stage of Development
 4.3.2. Distribution by Storage Capacity
 4.3.3. Distribution by Device Category (Patch Pumps/Infusion Pumps)
 4.3.4. Distribution by Type of Dose (Bolus/Continuous)
 4.3.5. Distribution by Usability (Disposable/Reusable)
 4.3.6. Distribution by Leading Players
 4.4. Large Volume Wearable Injectors: Development Landscape for Insulin
 4.4.1. Distribution by Stage of Development
 4.4.2. Distribution by Device Volume
4.4.3. Distribution by Device Category (Patch Pumps/Infusion Pumps)
4.4.4. Distribution by Usability (Disposable/Reusable)
4.4.5. Distribution by Availability of CGM System
4.4.6. Distribution by Leading Players

4.5. Large Volume Wearable Injectors: Distribution by Geography

5. PRODUCT COMPETITIVENESS, CLINICAL DESIGN AND PATENT ANALYSIS

5.1. Chapter Overview
5.2. Product Competitiveness Analysis

5.2.1. Product Competitiveness Analysis: Large Volume Wearable Injectors for Non-Insulin Biologics
5.2.2. Product Competitiveness Analysis: Large Volume Wearable Injectors for Insulin

5.3. Grid Analysis: Distribution of Large Volume Wearable Injectors Based on Development Phase and Type of Dosage

5.4.1. Distribution by Current Status
5.4.2. Distribution by Year
5.4.3. Distribution by Key Players
5.4.4. Distribution by Regional Approving Authorities
5.4.5. Distribution by the Type of Patent
5.4.6. Distribution by Patent Expiry Year

6. LARGE VOLUME WEARABLE INJECTORS FOR NON-INSULIN BIOLOGICS: DEVICE PROFILES

6.1. Chapter Overview
6.2. eLVD Patch Pump (Elcam Drug Delivery Devices (E3D))
6.2.1. Introduction
6.2.2. Product Description
6.2.3. Advantages

6.3. Enable Injector (Enable Injections)
6.3.1. Introduction
6.3.2. Product Description
6.3.3. Usage
6.3.4. Advantages
6.3.5. Recent Developments

6.4. Lapas® (Bespak)
6.4.1. Introduction
6.4.2. Product Description
6.4.3. Advantages

6.5. BD Libertas™ Wearable Injector (Becton Dickinson)
6.5.1. Introduction
6.5.2. Product Description
6.5.3. Usage
6.5.4. Advantages

6.6. PatchPump® (SteadyMed Therapeutics)
6.6.1. Introduction
6.6.2. Product Description
6.6.3. Usage
6.6.4. Advantages
6.6.5. Recent Developments

6.7. Precision-Therapy™ Wearable Injector, Flex-Therapy™ Wearable Injector and Flex-Therapy™ Mini Wearable Injector (Unilife Corporation)
6.7.1. Introduction
6.7.2. Product Description
6.7.3. Usage
6.7.4. Advantages
6.7.5. Recent Developments

6.8. sc2™Wear Infusor (scPharmaceuticals)
6.8.1. Introduction
6.8.2. Product Description
6.8.3. Advantages
6.8.4. Recent Developments

6.9. Single-use Injection Device (Roche)
6.9.1. Introduction
6.9.2. Product Description
6.9.3. Usage
6.9.4. Advantages
6.9.5. Recent Developments

6.10. SenseBolus, SensePatch and SenseTrial (Sensile Medical)
6.10.1. Introduction
6.10.2. Product Description
6.10.3. Usage
6.10.4. Advantages
6.10.5. Recent Developments

6.11. SmartDose® Electronic Wearable Injector (West Pharmaceutical Services)
6.11.1. Introduction
6.11.2. Product Description
6.11.3. Usage
6.11.4. Advantages
6.11.5. Recent Developments

7. LARGE VOLUME WEARABLE INJECTORS FOR INSULIN: DEVICE PROFILES
7.1. Chapter Overview
7.2. Diabetes: An Introduction
7.2.1. Epidemiology
7.2.2. Available Therapies
7.2.3. Need for Diabetes Management Systems
7.3. Advanced Insulin Delivery Systems: Device Profiles

7.3.1. ACCU-CHEK® (Roche Diagnostics)
7.3.1.1. Introduction
7.3.1.2. Product Information
7.3.1.3. Advantages
7.3.1.4. Recent Developments

7.3.2. DANA Diabecare® Insulin Pumps (SOOIL)
7.3.2.1. Introduction
7.3.2.2. Product Information
7.3.2.3. Advantages

7.3.3. JewelPUMP™ I and JewelPUMP™ II (Debiotech)
7.3.3.1. Introduction
7.3.3.2. Product Information
7.3.3.3. Advantages
7.3.3.4. Recent Developments

7.3.4. MiniMed® 530G (Medtronic)
7.3.4.1. Introduction
7.3.4.2. Product Information
7.3.4.3. Advantages
7.3.4.4. Recent Developments

7.3.5. mylife™ YpsoPump® (Ypsomed)
7.3.5.1. Introduction
7.3.5.2. Product Information
7.3.5.3. Advantages

7.3.6. OmniPod® (Insulet Corporation)
11.5. Insulet Corporation
11.5.1. Company Overview
11.5.2. Financial Overview
11.5.3. Product Portfolio
11.5.4. Collaborations
11.5.5. Future Outlook
11.6. Roche Laboratories
11.6.1. Company Overview
11.6.2. Financial Overview
11.6.3. Product Portfolio
11.6.4. Collaborations
11.6.5. Future Outlook
11.7. Sensile Medical
11.7.1. Company Overview
11.7.2. Product Portfolio
11.7.3. Collaborations
11.7.4. Future Outlook
11.8. SteadyMed Therapeutics
11.8.1. Company Overview
11.8.2. Financial Overview
11.8.3. Product Portfolio
11.8.4. Collaborations
11.8.5. Future Outlook
11.9. Tandem Diabetes Care
11.9.1. Company Overview
11.9.2. Financial Overview
11.9.3. Product Portfolio
11.9.4. Collaborations
11.9.5. Future Outlook
11.10. Unilife Corporation
11.10.1. Company Overview
11.10.2. Financial Overview
11.10.3. Product Portfolio
11.10.4. Collaborations
11.10.5. Future Outlook
11.11. West Pharmaceutical Services
11.11.1. Company Overview
11.11.2. Financial Overview
11.11.3. Product Portfolio
11.11.4. Collaborations
11.11.5. Future Outlook

12. SWOT ANALYSIS
12.1. Chapter Overview
12.2. Strengths
12.3. Weaknesses
12.4. Opportunities
12.5. Threats

13. CONCLUSION
13.1. Novel Drug/Therapy Delivery Solutions Offer a number of Advantages, including Self-Administration in the Home-care Setting
13.2. Technical Improvements have Led to the Development of Advanced Large Volume Wearable Delivery Systems Having Multiple Useful Features
13.3. The Market, Characterized by the Presence of both Large and Small Companies, is Likely to be Impacted by the Growth of the Biologics Market
13.4. Partnerships and Venture Capital Financing have Emerged as Key Drivers of Growth in this Upcoming Area
13.5. The Large Volume Wearable Injector Market is Projected to Grow at an Aggressive Pace Over the Next Decade

13.6. Concluding Remarks

14. INTERVIEW TRANSCRIPTS

14.1. Chapter Overview

14.2. Menachem Zucker, VP and Chief Scientist, Elcam Medical

14.3. Michael Hooven, CEO, Enable Injections

14.4. Ben Moga, President, Ratio Drug Delivery

14.5. Pieter Muntendam, President and CEO, scPharmaceuticals

14.6. Graham Reynolds, VP & GM, Global Biologics and Tiffany H. Burke, Director, Global Communications, West Pharmaceutical Services

15. APPENDIX 1: TABULATED DATA

16. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS

List of Figures

Figure 3.1 Types of Drug Delivery Systems
Figure 3.2 Types of Self-Injection Devices
Figure 3.3 Worldwide Evolution in Healthcare Safety Legislation
Figure 4.1 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Stage of Development
Figure 4.2 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Storage Capacity
Figure 4.3 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Device Category (Patch Pumps/Infusion Pumps)
Figure 4.4 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Type of Dose (Bolus/Continuous)
Figure 4.5 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Usability (Disposable/Reusable)
Figure 4.6 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Leading Players
Figure 4.7 Large Volume Wearable Injectors for Insulin: Distribution by Stage of Development
Figure 4.8 Large Volume Wearable Injectors for Insulin: Distribution by Device Volume
Figure 4.9 Large Volume Wearable Injectors for Insulin: Distribution by Device Category (Patch Pumps/Infusion Pumps)
Figure 4.10 Large Volume Wearable Injectors for Insulin: Distribution by Usability (Disposable/Reusable)
Figure 4.11 Large Volume Wearable Injectors for Insulin: Distribution by Availability of CGM System
Figure 4.12 Large Volume Wearable Injectors for Insulin: Distribution by Leading Players
Figure 4.13 Large Volume Wearable Injectors: Distribution by Geography
Figure 4.14 Large Volume Wearable Injectors: Regional Landscape
Figure 5.1 Product Competitiveness Analysis: Large Volume Wearable Injectors for Non-Insulin Biologics
Figure 5.2 Product Competitiveness Analysis: Large Volume Wearable Injectors for Insulin
Figure 5.3 Grid Analysis: Distribution by Stage of Development and Type of Dosage
Figure 5.4 Patent Analysis: Distribution by Current Status
Figure 5.5 Patent Analysis: Distribution by Year
Figure 5.6 Patent Analysis: Distribution by Key Players
Figure 5.7 Patent Analysis: Distribution by Regional Approving Authorities
Figure 5.8 Patent Analysis: Distribution by the Type of Patent
Figure 5.9 Patent Analysis: Distribution by Patent Expiry Year
Figure 7.1 Diabetes: Worldwide Distribution of the Patients (2015)
Figure 7.2 Prevalence of Diabetes: Distribution by Continent (In Million)
Figure 7.3 Insulin-Based Therapies for Diabetes
Figure 7.4 Non-Insulin Therapies for Diabetes
Figure 7.5 Large Volume Wearable Injectors for Insulin: Twitter Trends (2010-2015)
Figure 7.6 Large Volume Wearable Injectors for Insulin: Twitter Word Cloud (2010-2015)
Figure 7.7 Large Volume Wearable Injectors for Insulin: Device Recalls (2010-2015)
Figure 7.8 Large Volume Wearable Injectors for Insulin: Popularity of Continuous Glucose Monitoring
Figure 8.1 Treprostinil IV Formulation: Annual Sales 2012 - Q1-Q3 2016 (USD Million)
Figure 8.2 Furosemide IV Formulation: Annual Sales, 2013 - Q1-Q3 2016 (EUR Million)
Figure 8.3 Herceptin®: Annual Sales, 1999-2015 (CHF Million)
Figure 8.4 Levodopa/Carbidopa: Annual Sales, 2010-2015 (USD Million)
Figure 8.5 Apokyn®: Annual Sales, 2011-2015 (USD Million)
Figure 8.6 Rocephin®: Annual Sales, 2014-2015 (CHF Million)
Figure 9.1 Marketed/Under Development Molecules: Parameters and Scoring Criteria
Figure 10.1 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Base Scenario, 2017-2027 (USD Million)
Figure 10.2 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Base Scenario, Number of Units, 2017-2027 (Million)
Figure 10.3 Large Volume Wearable Injectors for Non-Insulin Biologics: Market Evolution 2021-2024-2027 (Million)
Figure 10.4 Large Volume Wearable Injectors for Non-Insulin Biologics: Market Share of Devices, 2016, 2020, 2027 (USD Million)
Figure 10.5 Large Volume Wearable Injectors Market for Insulin: Base Scenario, 2017-2027 (USD Million)
Figure 10.6 Large Volume Wearable Injectors Market for Insulin: Base Scenario, Number of Units, 2017-2027 (Million)
Figure 11.1 Becton Dickinson: Annual Revenues, 2011-2016 (USD Billion)
Figure 11.2 Insulet Corporation: Annual Revenues, 2011- Q1-Q3 2016 (USD Million)
Figure 11.3 Roche: Annual Revenues, 2011 - Q1-Q3 2016 (CHF Million)
Figure 11.4 Roche: Annual Revenues, 2016: Distribution by Business Segment (CHF Billion)
Figure 11.5 Tandem Diabetes Care: Annual Revenues, 2012 - Q1-Q3 2016 (USD Million)
Figure 11.6 Unilife Corporation: Annual Revenues, 2011-2016 (USD Million)
Figure 11.7 West Pharmaceutical Services: Annual Revenues, 2011-2016 (USD Million)
Figure 13.1 Large Volume Wearable Injectors for Non-Insulin Biologics Market Summary: Number of Units 2017, 2022 and 2027 (Million)

List of Tables

Table 3.1 List of Prefilled Syringes
Table 3.2 List of Pen-Injector Systems
Table 3.3 List of Autoinjector Systems
Table 3.4 List of Needle-Free Injectors
Table 4.1 Large Volume Wearable Injectors: Development Landscape for Non-Insulin Biologics
Table 4.2 Large Volume Wearable Injectors: Development Landscape for Insulin
Table 6.1 Large Volume Wearable Injectors for Non-Insulin Biologics: List of Devices Profiles
Table 7.1 Advanced Insulin Delivery Systems
Table 7.2 DANA Diabecare®: Specifications
Table 7.3 Jewelpump™: Specifications
Table 7.4 Jewelpump™: Advantages
Table 7.5 Minimed® 530G: Specifications
Table 7.6 Mylife™ Ypsopump®: Specifications
Table 7.7 Omnipod®: Specifications
Table 7.8 T:Flex®: Specifications
Table 8.1 Large Volume Wearable Injectors: Drugs under Evaluation
Table 8.2 Repatha®: Clinical Trials
Table 8.3 Remodulin®: Dosage Regimen
Table 8.4 Orenitram®: Dosage
Table 8.5 Tyvaso®: Dosage
Table 8.6 Furosemide: Clinical Trials
Table 8.7 Furosemide: Manufacturers and Suppliers
Table 8.8 Subcutaneous Herceptin®: Clinical Trials
Table 8.9 ND0612: Clinical Trials
Table 8.10 ND0612H: Phase II Trials (Objectives and Results)
Table 8.11 Levodopa/Carbidopa: Manufacturer and Suppliers
Table 8.12 Ketorolac Tromethamine: Manufacturers and Suppliers
Table 9.1 Marketed Biologics: Most Likely Candidates for Administration with Large Volume Wearable Injectors
Table 9.2 Marketed Biologics: Likely Candidates for Administration with Large Volume Wearable Injectors
Table 9.3 Marketed Biologics: Less Likely Candidates for Administration with Large Volume Wearable Injectors
Table 9.4 Pipeline Molecules: Most Likely Candidates for Administration with Large Volume Wearable Injectors
Table 9.5 Pipeline Molecules: Likely Candidates for Administration with Large Volume Wearable Injectors
Table 9.6 Pipeline Molecules: Less Likely Candidates for Administration with Large Volume Wearable Injectors
Table 10.1 Large Volume Wearable Injectors for Non-Insulin Biologics (Approved/Under Development)
Table 11.1 Large Volume Wearable Injectors: Key Players
Table 11.2 Becton Dickinson: Medical Devices Portfolio
Table 11.3 Debiotech: Medical Devices Portfolio
Table 11.4 Sensile Medical: Medical Devices Portfolio
Table 11.5 SteadyMed Therapeutics: Medical Devices Portfolio
Table 11.6 t:slim X2™ Insulin Pump: Features
Table 11.7 t:slim X2™ Insulin Pump: Technical Specifications
Table 11.8 t:flex® Insulin Pump: Features
Table 11.9 t:flex® Insulin Pump: Technical Specifications
Table 11.10 West Pharmaceutical Services: Medical Devices Portfolio
Table 12.1 Large Volume Wearable Injectors: SWOT Analysis
Table 12.2 Recall of Device (Autoinjectors and Prefilled Syringes)
Table 15.1 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Stage of Development
Table 15.2 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Storage Capacity
Table 15.3 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Device Category (Patch Pumps/Infusion Pumps)
Table 15.4 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Type of Dose (Bolus/Continuous)
Table 15.5 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Usability (Disposable/Reusable)
Table 15.6 Large Volume Wearable Injectors for Non-Insulin Biologics: Distribution by Leading Players
Table 15.7 Large Volume Wearable Injectors for Insulin: Distribution by Stage of Development
Table 15.8 Large Volume Wearable Injectors for Insulin: Distribution by Device Volume
Table 15.9 Large Volume Wearable Injectors for Insulin: Distribution by Device Category (Patch Pumps/Infusion Pumps)
Table 15.10 Large Volume Wearable Injectors for Insulin: Distribution by Usability (Disposable/Reusable)
Table 15.11 Large Volume Wearable Injectors for Insulin: Distribution by Availability of CGM System
Table 15.12 Large Volume Wearable Injectors for Insulin: Distribution by Leading Players
Table 15.13 Large Volume Wearable Injectors: Distribution by Geography
Table 15.14 List of Patents, 2013-2016
Table 15.15 Patent Analysis: Distribution by Current Status
Table 15.16 Patent Analysis: Distribution by Year
Table 15.17 Patent Analysis: Distribution by Key Players
Table 15.18 Patent Analysis: Distribution by Regional Approving Authorities
Table 15.19 Patent Analysis: Distribution by the Type of Patent
Table 15.20 Patent Analysis: Distribution by Patent Expiry Year
Table 15.21 Diabetes: Worldwide Distribution of the Patients (2015)
Table 15.22 Prevalence of Diabetes: Distribution by Continent (In Million)
Table 15.23 Treprostinil IV Formulation: Annual Sales, 2012 - Q1-Q3 2016 (USD Million)
Table 15.24 Furosemide IV Formulation: Annual Sales, 2013 - Q1-Q3 2016 (EUR Million)
Table 15.25 Herceptin®: Annual Sales, 1999-2015 (CHF Million)
Table 15.26 Levodopa/Carbidopa: Annual Sales, 2010-2015 (USD Million)
Table 15.27 Apokyn®: Annual Sales, 2011-2015 (USD Million)
Table 15.28 Rocephin®: Annual Sales, 2014-2015 (CHF Million)
Table 15.29 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Base Scenario, 2017-2027 (USD Million)
Table 15.30 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Conservative Scenario, 2017-2027 (USD Million)
Table 15.31 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Optimistic Scenario, 2017-2027 (USD Million)
Table 15.32 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Base Scenario, Number of Units, 2017-2027 (Million)
Table 15.33 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Conservative Scenario, Number of Units, 2017-2027 (Million)
Table 15.34 Large Volume Wearable Injectors Market for Non-Insulin Biologics: Optimistic Scenario, Number of Units, 2017-2027 (Million)
Table 15.35 Large Volume Wearable Injectors for Non-Insulin Biologics: Market Evolution 2021-2024-2027 (Million)
Table 15.36 Large Volume Wearable Injectors for Non-Insulin Biologics: Market Share of Devices, 2016, 2020, 2027 (USD Million)
Table 15.37 Large Volume Wearable Injectors Market for Insulin: Base Scenario, 2017-2027 (USD Million)
Table 15.38 Large Volume Wearable Injectors Market for Insulin: Base Scenario, Number of Units, 2017-2027 (Million)
Table 15.39 Becton Dickinson: Annual Revenues, 2011-2016 (USD Billion)
Table 15.40 Insulet Corporation: Annual Revenues, 2011- Q1-Q3 2016 (USD Million)
Table 15.41 Roche: Annual Revenues, 2011 - Q1-Q3 2016 (CHF Million)
Table 15.42 Roche: Annual Revenues, 2016: Distribution by Business Segment (CHF Billion)
Table 15.43 Tandem Diabetes Care: Annual Revenues, 2012 - Q1-Q3 2016 (USD Million)
Table 15.44 Unilife Corporation: Annual Revenues, 2011-2016 (USD Million)
Table 15.45 West Pharmaceutical Services: Annual Revenues, 2011-2016 (USD Million)
Table 15.46 Large Volume Wearable Injectors for Non-Insulin Biologics Market Summary: Number of Units 2017, 2022 and 2027 (Million)

Ordering:
Order Online - http://www.researchandmarkets.com/reports/4078826/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

- Product Name: Large Volume Wearable Injectors Market (3rd Edition), 2017-2027
- Web Address: http://www.researchandmarkets.com/reports/4078826/
- Office Code: SC2G6X74

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User:</td>
<td>USD 2499</td>
</tr>
<tr>
<td>Electronic (PDF) - Site License:</td>
<td>USD 5999</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide:</td>
<td>USD 10999</td>
</tr>
</tbody>
</table>

* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information
Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB9853083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World