Agricultural Robots and Drones 2017-2027: Technologies, Markets, Players

Description: This report is focused on agricultural robots and drones. It analyses how robotic market and technology developments will change the business of agriculture, enabling ultra-precision farming and helping address key global challenges.

It develops a detailed roadmap of how robotic technology will enter into different aspects of agriculture, how it will change the way farming is done and transform its value chain, how it becomes the future of agrochemicals business and how it will modify the way we design agricultural machinery.

In particular, this report provides:

Market forecasts:

Granular ten-year segmented market forecasts for 14 categories including static milking robotics, mobile dairy farm robots, autosteer tractors, autonomous tractors, unmanned spraying drones, autonomous data mapping drones, robotic implements for de-weeding, autonomous de-weeding mobile robots, robotic fresh fruit harvesting, robotic strawberry harvesting, manned and unmanned robotic lettuce/vegetable thinning/harvesting and so on. Our market forecasts are also segmented by territory. All our assumptions and data points are clearly explained.

Technology assessment:

Detailed technology assessment covering all the key robotic/drone projects, prototypes and commercial products relevant to the agricultural sector. Detailed overview and assessment of key technological components such as vision sensors, LIDARs, novel end-effectors, and hyper/multi-spectral sensors. Technology roadmaps outlining how different equipment are increasingly becoming vision-enabled, intelligence and unmanned/autonomous.

Application assessment:

Detailed application assessment covering dairy farms, fresh fruit harvesting, organic farming, crop protection, data mapping, seeding, nurseries, and so on. For each application/sector, a detailed overview of the existing industry is given, the needs for and the challenges facing the robotic technology are analysed, the addressable market size is estimated by territory, and granular ten-year market projections are given.

Company profiles:

More than 20 interview-based full company profiles with detailed SWOT analysis, 40 company profiles without SWOT analysis, and the works of more than 76 companies/research groups listed and summarized.

Robotics in dairy farms will reach $8bn by 2023

Robotic and drones have already started to quietly transform many aspects of agriculture. Already, thousands of robotic milking parlours have been installed worldwide, creating a $1.9bn industry that is projected to grow to $8bn by 2023. Mobile robots are also already penetrating dairy farms, helping automate tasks such as feed pushing or manure cleaning.

Tractors become increasingly autonomous

Tractor guidance and autosteer technologies are also going mainstream thanks to improvements and cost reductions in RTK GPS technology. Indeed, more than 300k tractors equipped with autosteer or tractor guidance were sold in 2016, rising to more than 660k units per year by 2027. Unmanned autonomous tractors have also been technologically demonstrated with large-scale market introduction largely delayed not by technical issues but by regulation, high sensor costs and the lack of farmers' trust. This will all change by 2022 when sales of unmanned or master-slave (e.g., follow me) tractors picks up.

Drones bring in increased data analytics into farming
Agriculture will be a major market for drones, reaching over $480m in 2027. Unmanned remote-controlled helicopters have already been spraying rice fields in Japan since early 1990s. Indeed, this is a maturing technology/sector with overall sales in Japan having plateaued. This market will benefit from a new injection of life as suppliers diversify into new territories and as low-cost light-weight sprayer drones enter the market.

The progress of drones is by no means limited to spraying. Their core function is to provide detailed aerial maps of farms, enabling farmers to take data-driven site-specific action. These light-weight low-cost drones are often loaded with small multi-spectral sensors, measuring key indicators about plant health, yields, water stress levels, nitrogen deficiency and so on.

This development will soon be entering into its growth years. This is because regulatory barriers for drone deployment are coming down and, more importantly, precision farming ecosystems is finally coming together meaning that farmers can act on what the data tells them. In time, the drone hardware will become commoditized and value will shift largely to data acquisition and analytics providers.

Robotics is the future of agrochemicals

Agricultural robotics is also rapidly progressing on the ground. Vision-enabled robotic implements have been in commercial use for some years in organic farming. These implements follow the crop rows, identify the weeds, and aid with mechanical hoeing. The next generation of these advanced robotic implements is also in its early phase of commercial deployment. Indeed, they are already thinning as much as 10% of California’s lettuce fields.

The end game however is to turn these implements into general-purpose autonomous weeding robots. This means that swarms of these small, light-weight robots will locate weeds and take site-specific precise action to eliminate them.

This has already starting to occur with numerous companies and groups developing and deploying a variety of weeding robots. Indeed, whilst most products are in prototype or semi-commercial trial phase, the first notable sales have also taken place aimed at small multi-crop vegetable farmers.

This has far reaching long-term consequences for the farming industry, particularly affecting suppliers of crop protection chemicals. This is because it changes the way we farm as farmers will no longer need to broadcast spray chemicals uniformly across the entire field. Instead, they will move even beyond variable-rate precision towards ultra-precision agriculture where the farm is managed on an individual plant basis and where each plant is given only the exact dose of chemicals that it requires.

This is only a long term development at this stage but it will impact the total consumption of crop protection chemicals. It can convert volume commodity agrochemical business into specialty chemical operations, and can force suppliers to re-invent themselves as providers of crop protection, whatever its form, and not just chemical suppliers.

Agricultural machinery transfigured?

The advent of agricultural robots will herald a change in the way agricultural machinery is envisaged. Today, bigger is better because the productivity of the skilled driver/operator is improved. Mobile robots could change this by taking the driver out of the equation.

Indeed, emerging mobile agricultural robots are likely to be slow, unmanned, light-weight and modular. Their slowness means that more attention is given to each plant, their lightness means no soil compaction, and their small size means potentially lower cost.

The latter point is critical if such mobile robots are ever to leave the drawing board because slower and small machines are inherently less productive therefore need to be lower cost, in some cases by as much as 24 times. This cost requirement alone will prevent uptake in the medium-term.

Today, most examples of such robots are only in the prototypes or early stage commercial trial phase but the direction of development is clear. The technological challenges will soon largely been solved and the industry will enter the phase of making and proving a commercial case, whether as an equipment or a service.
Farmers' conservatism will however turn this potentially revolutionary change into an evolutionary, incremental one.

Robotics finally succeed in fresh fruit harvesting?

Despite non-fresh fruit harvesting being largely mechanized, fresh fruit picking has remained mostly out of the reach of machines or robots. Picking is currently done using manual labour with machines at most playing the part of an aid that speeds up the manual work.

Progress here has been hampered by the stringent technical requirements. The vision system needs to detect fruits inside a complex canopy whilst the robotic arms needs to rapidly, economically and gently pick the fruit. The lack of CAD models has also prevented rapid iterations in product development. The absence of universal applicability has also put off large investments as each harvester is likely to work on a narrow segment.

This is however beginning to change, albeit slowly. A limited number of fresh strawberry harvesters are already being commercially trialled. Some versions require the farm layout to be changed and the strawberry to be trained to help the vision system identify a commercially-acceptable percentage of strawberries. Others are developing a more universal solution compatible with all varieties of strawberry farms. Market adoption will start from 2020/2021 onwards.

At the same time, fresh apple robotic harvesting has also reached the level of late stage prototyping. Here, novel low-cost end-effectors are being developed together with low-cost good enough robotic arms that will work in parallel. Market adoption will start from 2022/2023 onwards.

Contents:

1. EXECUTIVE SUMMARY
1.1. What is this report about?
1.2. Growing population and growing demand for food
1.3. Major crop yields are plateauing
1.4. Employment in agriculture
1.5. Global evolution of employment in agriculture
1.6. Aging farmer population
1.7. Trends in minimum wages globally
1.8. Towards ultra precision agriculture via the variable rate technology route
1.9. Ultra Precision farming will cause upheaval in the farming value chain
1.10. Agricultural robotics and ultra precision agriculture will cause upheaval in agriculture's value chain
1.11. The battle of business models between RaaS and equipment sales
1.12. Transition towards to swarms of small, slow, cheap and unmanned robots
1.13. Market and technology readiness by agricultural activity
1.14. Technology progression towards driverless autonomous large-sized tractors
1.15. Technology progression towards autonomous, ultra precision de-weeding
1.16. Technology and progress progression roadmap for robotic fresh fruit harvesting
1.17. Ten-year market forecasts for all agricultural robots and drones segmented by type and/or function
1.18. Ten-year market forecasts for autonomous and mobile agricultural robots and drones segmented by type and/or function

2. AUTONOMOUS MOBILITY FOR LARGE TRACTORS
2.1. Number tractors sold globally
2.2. Value of crop production and average farm sizes per region
2.3. Overview of top agricultural equipment companies
2.4. Tractor Guidance and Autosteer Technology for Large Tractors
2.5. Auto steer for large tractors
2.6. Ten-year forecasts for autosteer tractors
2.7. Master-slave or follow-me large autonomous tractors
2.8. Fully autonomous driverless large tractors
2.9. Technology progression towards driverless autonomous large-sized tractors
2.10. Ten-year market forecasts for tractor guidance, autosteer and fully autonomous tractors/combines

3. AUTONOMOUS ROBOTIC AGRICULTURAL PLATFORMS
3.1. Autonomous small-sized agricultural robots
3.2. Autonomous agricultural robotic platforms
3.3. Ten-year market forecasts for autonomous robotic data scouts
4. ROBOTIC WEED KILLING
4.1. From manned, broadcast towards autonomous, ultra precision de-weeding
4.2. Crop protection chemical sales per top suppliers globally
4.3. Sales of top global and Chinese herbicide suppliers
4.4. Global herbicide consumption data
4.5. Glyphosate consumption and market globally
4.6. Regulations will impact the market for robotic weed killers?
4.7. Penetration of herbicides in different field crops
4.8. Growing challenge of herbicide-resistant weeds
4.9. Autonomous weed killing robots
4.10. Autonomous robotic weed killers
4.11. Organic farming
4.12. Robotic mechanical weeding for organic farming
4.13. Technology progression towards autonomous, ultra precision de-weeding
4.14. Ten-year market forecast for robotic weeding by technology type

5. ROBOTIC VEGETABLE THINNING AND HARVESTING
5.1. Autonomous lettuce thinning robots
5.2. Why asparagus harvesting should be automated
5.3. Automatic asparagus harvesting
5.4. Robotic/Automatic asparagus harvesting
5.5. Addressable market size for robotic lettuce thinning and weeding service provision
5.6. Ten-year market forecasts for robotic lettuce thinning and vegetable harvesting by technology and territory

6. ROBOTIC FRESH FRUIT PICKING
6.1. Field crop and non-fresh fruit harvesting is largely mechanized
6.2. Fresh fruit picking remains largely manual
6.3. Machining aiding humans in fresh fruit harvesting have not evolved in the past 50 years
6.4. Emerging robotic fresh fruit harvest assist technologies
6.5. Robot orchard data scouts and yield estimators
6.6. Emerging robotic fresh fruit harvest assist technologies
6.7. Robotic fresh apple harvesting
6.8. Robotic fresh citrus harvesting
6.9. Fresh fruit harvesting robots
6.10. Technology and progress progression roadmap for robotic fresh fruit harvesting
6.11. Addressable market size for robotic fresh apple-picking service provision
6.12. Ten-year market forecasts for robotic fresh citrus/apple harvesting by territory
6.13. Robotic fresh strawberry harvesting
6.15. Ten-year market forecasts for robotic fresh strawberry harvesting by territory

7. VINE PRUNING ROBOTS
7.1. Autonomous robotic vineyard scouts and pruners

8. GREENHOUSES AND NURSERIES
8.1. Autonomous robotics for greenhouses and nurseries

9. ROBOTIC SEEDERS
9.1. Variable rate technology for precision seed planting
9.2. Robotic seed planting

10. ROBOTIC DAIRY FARMING
10.1. Global trends and averages for dairy farm sizes
10.2. Global number and distribution of dairy cows by territory
10.3. Global country-specific addressable markets for robotic milking machines and feed pushers
10.4. Robotic milking parlours
10.5. Overview of robotic milking parlours
10.6. Autonomous robotic feed pushers
10.7. Alternatives to autonomous robotic feed pushers
10.8. Autonomous robotic shepherds
10.9. Autonomous manure cleaning robots
10.10. Ten-year market forecasts for robotic milking systems by country
10.11. Ten-year market forecasts for automatic feed pusher and other mobile robotics in dairy farming

11. AERIAL DATA COLLECTIONS
11.1. Satellite vs. plane vs drone mapping and scouting
11.2. Benefits of using aerial imaging in farming
11.3. Unmanned drones in rice field pest control in Japan
11.4. Unmanned drones and helicopters for field spraying
11.5. Unmanned agriculture drones on the market
11.6. Comparing different agricultural drones on the market
11.7. Regulation barriers coming down?
11.8. Agricultural drones: the emerging value chain
11.9. Core company information on key agricultural drone companies
11.10. Ten-year market forecasts for agricultural drones

12. KEY ENABLING COMPONENTS

13. GRIPPER TECHNOLOGY
13.1. Suction-based end effector technologies for fresh fruit harvesting
13.2. Simple and effective robotic end effectors for fruit harvesting
13.3. Soft robotics based end effector technologies for fresh fruit handling
13.4. Robotic end effector technologies for fresh fruit harvesting
13.5. Dexterous robotic hands for agricultural robotics
13.6. Examples of dexterous robotic hands

14. NAVIGATIONAL TECHNOLOGIES (RTK, LIDAR, LASERS AND OTHERS)
14.1. RTK systems: operation, performance and value chain
14.2. Lidar- basic operation principles
14.3. Review of LIDARs on the market or in development
14.4. Performance comparison of different LIDARs on the market or in development
14.5. Assessing suitability of different LIDAR for agricultural robotic applications
14.6. Hyperspectral image sensors
14.7. Hyperspectral imaging and precision agriculture
14.8. Hyperspectral imaging in other applications
14.9. Hyperspectral imaging sensors on the market
14.10. Common multi-spectral sensors used with agricultural drones
14.11. GeoVantage

15. MARKET FORECAST, BUSINESS LANDSCAPE, COMPANY POSITIONING, AND COMPANY PROFILE
15.1. Ten-year market forecasts for all agricultural robots and drones segmented by type and/or function
15.2. Ten-year market forecasts for agricultural robots and drones segmented by type and/or function
15.3. Ten-year market forecasts for autonomous and mobile agricultural robots and drones segmented by type and/or function
15.4. Ten-year market forecasts for tractor guidance, autosteer and fully autonomous tractors/combines
15.5. Ten-year market forecasts for autonomous robotic data scouts
15.6. Ten-year market forecast for robotic weeding by technology type
15.7. Ten-year market forecasts for robotic lettuce thinning and vegetable harvesting by technology and territory
15.8. Ten-year market forecasts for robotic fresh citrus/apple harvesting by territory
15.9. Ten-year market forecasts for robotic fresh strawberry harvesting by territory
15.10. Ten-year market forecasts for robotic milking systems by country
15.11. Ten-year market forecasts for automatic feed pusher and other mobile robotics in dairy farming
15.12. Ten-year market forecasts for agricultural drones

16. INTERVIEW-BASED COMPANY PROFILES
16.1. Agrobot
16.2. Blue River Technology
16.3. DeepField Robotics
16.4. F. Poulsen Engineering ApS
16.5. Fresh Fruit Robotics
16.6. Harvest CROO Robotics
16.7. Ibex Automation
16.8. miRobot
16.9. Naio Technologies
16.10. Nippon Signal
16.11. Parrot
16.12. Precision Hawk
16.13. Quanergy
16.15. Shadow Robotics
16.16. Soft Robotics Inc
16.17. Stream Technologies
16.18. SwarmFarm Robotics
16.19. Tillet and Hague
16.20. Velodyne LiDAR

17. COMPANY PROFILES
17.1. 3D Robotics
17.2. AGCO
17.3. AgEagle
17.4. Agjunction Inc
17.5. Agribotix
17.6. Airinov
17.7. Autonomous Tractor Cooperation
17.8. Beijing UniStrong Science and Technology (BUST)
17.9. Case IH
17.10. Dogtooth Technologies
17.11. Empire Robotics
17.12. Farmbot
17.13. Festo
17.14. Gamaya
17.15. GrabIT
17.16. Harvest Automation
17.17. Headwall
17.18. HerdDog
17.19. HETO
17.20. HiPhen
17.21. Hortau
17.22. John Deere
17.23. Kinzes Autonomous Harvest System
17.24. Kubota Corp
17.25. L’Avion Jaune
17.26. LeddarTech
17.27. Lely
17.28. LemnaTec
17.29. Magnificant
17.30. Mavrx
17.31. McRobotic
17.32. MicaSense
17.33. Motorleaf
17.34. NavCom
17.35. Near Earth Autonomy
17.36. Novariant
17.37. Orbital Insight
17.38. Pix4D
17.39. Prospera
17.40. Qubit Systems
17.41. Robotics Plus
17.42. Robotnik
17.43. Scanse
17.44. senseFly
17.45. Sentra
17.46. SkySquirrel
17.47. SpeIR
17.48. Trimble
17.49. UAV-IQ Precision Agriculture
17.50. Urban Crops
17.51. URSULA Agriculture
17.52. VineRangers
17.53. Yanmar
17.54. Yara

18. COMPANIES COVERED IN THE REPORT
18.1. Aarhus University
18.2. Abundant Robotic Inc
18.3. Adigo
18.4. Aerial Technology Limited
18.5. Agricultural Solutions Ltd
18.6. Ai-Solution
18.7. Amazonen-Werke
18.8. Australian Centre of Field Robotics
18.9. Autonomous Tractor Corporation
18.10. BASF
18.11. Bayer
18.12. BeauMatic Robotics
18.13. Bosch
18.14. C. Write & Son Ltd
18.15. Carnegie Mellon University
18.16. Cerescon
18.17. CNH Industrial (Case IH and New Holland)
18.18. Conpleks Innovation (Kongskilde Vibro Crop Robotti)
18.19. Cork University
18.20. DBR Conveyor Concepts
18.21. Delair-tech
18.22. DeLaval
18.23. DEMCON
18.24. Deutz Fahr
18.25. DJI
18.26. Dorhout R&D
18.27. Dow
18.28. DroneDeploy
18.29. DuPont
18.30. ecoRobotix
18.31. Energid
18.32. Ferrari Costruzioni Meccaniche
18.33. Festo
18.34. FMTC
18.35. Frankin Robotics
18.36. Fuji Heavy Industries
18.37. Gardford Machinery
18.38. Geiger Lund
18.39. GeoVantage
18.40. Hexacon
18.41. HoneyComb
18.42. Industrial Technology Centre of Nagasaki
18.43. JCB
18.44. JOZ
18.45. Kinov
18.46. Kinze Autonomy
18.47. Kongskilde Industries A/S (Kongskilde Vibro Crop Robotti)
18.48. KU Leuven
18.49. Lockheed Martin
18.50. Mahindra Group
18.51. Monosem
18.52. Monsanto
18.53. Nurfam
18.54. Pneubotics
18.55. Precision Planting LLC
18.56. Pulse Electronics
18.57. Queensland University of Technology (Agbot I and Agbot II)
18.58. Resonon
18.59. RoboPeak
18.60. Rowbot
18.61. SAC Milking
18.62. SAPOS
18.63. Schunk
18.64. SICK
18.65. Strausss Verpackungsmaschinen GmbH
18.66. Sumitomo Chemical
18.67. Syngenta
18.68. Topcon
18.69. University of Illinois
18.70. University of New South Wales
18.71. Vision Robots Corp
18.72. Wageningen University
18.73. Wall-Ye
18.74. Wasserbauer
18.75. Yamaha

Ordering:

Order Online - http://www.researchandmarkets.com/reports/4109829/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

- **Product Name:** Agricultural Robots and Drones 2017-2027: Technologies, Markets, Players
- **Web Address:** http://www.researchandmarkets.com/reports/4109829/
- **Office Code:** SCWP71DR

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users</td>
<td></td>
<td>USD 5075</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users</td>
<td></td>
<td>USD 5380 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users</td>
<td></td>
<td>USD 7615</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - Enterprisewide</td>
<td></td>
<td>USD 7920 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

- * Shipping/Handling is only charged once per order.
- * The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

- **Title:**
 - [] Mr
 - [] Mrs
 - [] Dr
 - [] Miss
 - [] Ms
 - [] Prof

- **First Name:** []
- **Last Name:** []
- **Email Address:** *

- **Job Title:**
- **Organisation:**
- **Address:**
- **City:**
- **Postal / Zip Code:**
- **Country:**
- **Phone Number:**
- **Fax Number:**

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World