Manned Electric Aircraft 2017-2027 Hybrid & Pure Electric Technology Roadmap, Market Forecasts, Companies, Models, MEA

Description: This report of over 190 slide format pages is replete with new forecasts, analysis and infographics seeing the future. The key parts of recent presentations by all the key players are embedded in this work, almost entirely researched in 2016 and early 2017 by award winning PhD level analysts travelling worldwide. Interviews, analyst databases, web searches and conference attendance were extensively used. Old information is useless in this now fast moving field.

The structure of the report is a comprehensive Executive Summary and Conclusions then Introduction looking at lessons from the past then chapters on types of powertrain involved, motors and motor generators, energy storage, energy harvesting and regeneration, the end game of Energy Independent Electric Vehicles EIV and finally More Electric Aircraft MEA programs and how they are migrating to electric aircraft. Throughout there are many examples of electric aircraft from airships to helicopters and microlights, both for sale and planned. Specifications are given for many of these and key components for the future are discussed in depth. The tone is critical not evangelical.

The coverage in the report includes 2017-2027 forecasts of low and high priced electric aircraft sales by number, unit price and market value and a view of figures up to 2031 including assessments by several leading players. The subject matter includes looking at how electric aircraft have largely followed electric land and water vehicles. Pure electric small ones appeared first, about 50 years after the first electric boats and cars. Hybrid ones are needed for the longer distances and tougher duty cycles and only now are these getting serious investment.

The report finds that the delays are only partly explained by the tougher demands and regulatory requirements of aircraft and how things are now changing with much larger commitments. In 2016, Siemens and Airbus agreed to pool 200 engineers to work on them, the level of effort Toyota allotted to hybrid cars twenty years earlier, with major commercial success resulting today. Toyota enjoys well over $20 billion dollars of sales of electric cars, buses and forklifts with Honda and BMW successful too - interesting because all three are now tackling aircraft. Indeed, Google and Facebook are involved in electric cars and aircraft and Apple is interested so it is wake up time. The report analyses the opportunities in new aircraft and their changing key components.

Contents:
1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Unique approach of this report
 1.2. Some important findings
 1.3. Why go electric for manned aircraft?
 1.4. How to transition to electric aircraft: MEA, hybrid, pure electric
 1.4.1. Airbus Vahana flying car announcement 2017
 1.5. MEA issues and opportunities
 1.6. Where electric aircraft are headed: range anxiety to range superiority
 1.7. Manned aircraft lagged land-based electric vehicles
 1.7.1. Great achievements
 1.7.2. Little business
 1.7.3. Hybrids should have been first
 1.7.4. Hybrids: running before you can walk
 1.8. Trend to larger electric aircraft
 1.8.1. Overview of major issues
 1.8.2. Viability of pure electric larger aircraft: timeline
 1.9. Electrification of aircraft in general: rapid progress
 1.10. Electric aircraft already commercialised
 1.10.1. Examples
 1.10.2. Viability of electric primary trainers already
 1.11. Routes to further commercialisation of electric aircraft
 1.12. Pure electric manned aircraft arriving
 1.13. Hybrid electric aircraft arriving

More information from http://www.researchandmarkets.com/reports/4173006/
1.13.1. HYPSTAIR powertrain for general aviation
1.13.2. Hybrid electric helicopters, multicopters
1.13.3. Airbus eThrust concept with DEP
1.13.4. NASA Sceptor concept with DEP
1.14. Flying cars: needed or possible?
1.14.1. Flying cars using airports
1.14.2. Only single seat is viable?
1.14.3. Combating urban gridlock: better alternatives
1.14.4. Hybrid VTOL flying car feasibility
1.14.5. Elon Musk, Larry Page and Nikhil Goel
1.15. Choice of powertrains is influenced by many factors
1.16. New end game: Energy Independent Vehicles EIV
1.17. Key enabling technologies in future: examples
1.17.1. Energy harvesting including regeneration
1.17.2. Structural electronics tears up the rule book
1.17.3. Power electronics and other key enablers
1.18. Less mechanics: more electronics
1.19. Becoming one business land, water, air - hybrid and pure electric
1.20. Regulations have impeded small e-aircraft in the USA
1.21. Ambition and freedom in Europe
1.22. Progress in East Asia
1.22.1. China
1.22.2. Japan
1.23. Market forecasts
1.23.1. Timelines 2016-2031: Airbus, Rolls Royce, others
1.23.2. Rolls Royce timeline
1.23.3. MEA target and roadmaps converge to EV for 2035
1.23.4. Manned electric aircraft and airliner forecasts
1.23.5. Manned electric aircraft market forecasts 2016-2026 including hybrid

2. INTRODUCTION
2.1. Lessons from the past
2.2. Situation today
2.3. Other examples: trend to offering several powertrain options in one airframe
2.4. First commercial four seat hybrid
2.5. Contest in 2015: new battery and fuel cell planes
2.6. DLR project for HY4 four-passenger fuel cell aircraft
2.7. New Airbus autonomous aircraft November 2016
2.8. Zero-emission air transport - first flight of four-seat passenger aircraft HY4 - September 2016
2.9. The first electric and VTOL aircraft by Zee.Aero - October 2016
2.10. Hamilton aerobatic aircraft
2.11. Airbus flying car prototype ready by the end of 2017

3. TYPES OF POWERTRAIN
3.1. What is an electric powertrain?
3.2. Pure electric or hybrid
3.2.1. Example: PC Aero Elektra One
3.2.2. Examples: E-Genius, SUGAR Volt
3.3. Types of hybrid electric aircraft
3.3.1. Parallel hybrid
3.3.2. Series hybrid
3.4. Typical hybrid duty cycle and examples
3.4.1. Duty cycle
3.4.2. Cambridge University Song hybrid
3.4.3. Equator P2 Xcursion amphibious aircraft
3.4.4. Biofuel solar hybrid
3.4.5. DARPA VTOL
3.5. Airbus overview of hybrid electric aircraft
3.6. Mild vs strong hybrid: lessons from land vehicles
3.7. EV powertrains and technology forecasts: 2000
3.8. EV powertrains and technology forecasts: 2016
3.9. EV powertrains and technology forecasts: 2017 onwards
3.10. Energy independent electric vehicles EIV operational choices
3.11. Key EIV technologies
3.12. Motors and motor generators
3.12.1. Trend to higher power to weight ratio
3.12.2. Technologies in context of all EVs
3.12.3. Electrical engine start for hybrid electric aircraft
3.12.4. Integrated components - in-wheel
3.12.5. Multimotor designs
3.12.6. Superconducting propulsors and interconnects
3.13. Range extenders
3.13.1. Overview
3.13.2. Gas turbines and rotary combustion engines
3.13.3. Fuel cells

4. ENERGY STORAGE
4.1. Options
4.2. The role of energy storage technologies in electric vehicles
4.3. Making lithium-ion batteries safer
4.4. Operational Principles of Different Systems
4.5. Supercapacitors to Li-ion batteries - a spectrum of functional tailoring
4.6. Matching future hybrid and pure electric aircraft to energy storage choices. Learning from other industries
4.6.1. Map of energy storage choices 2026-2036
4.7. Supercapacitors across lithium-ion batteries
4.8. Extreme lightweighting by structural electronics
4.8.1. Earlier attempts at structural fuel; cells, batteries and capacitors
4.8.2. Successful supercapacitor bodywork
4.8.3. Many other types of structural electronics for aircraft

5. ENERGY HARVESTING AND REGENERATION
5.1. Definitions and background
5.2. Faradair BEHA

6. ENERGY INDEPENDENT VEHICLES EIV
6.1. Energy independent electric vehicles
6.1.1. Why we want more than mechanical energy independence
6.1.2. The EIV powertrain
6.1.3. EIV operational choices
6.1.4. Turtle airship USA
6.1.5. Solar Impulse Switzerland
6.1.6. Solar Ship inflatable fixed wing aircraft Canada
6.1.7. Sunstar USA
6.1.8. Sunseeker Duo USA
6.1.9. The More Electric Aircraft MEA
6.2. Not there yet for large hybrids
6.3. Power electronics in conventional aircraft
6.4. Airliner becomes an electric vehicle when on the ground
6.5. Great potential to improve rotating electrical machines and power electronics
6.6. Future design space: NASA view

7. CAFE TENTH ELECTRIC AIRCRAFT SYMPOSIUM REPORT 2016

Ordering:
Order Online - http://www.researchandmarkets.com/reports/4173006/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Manned Electric Aircraft 2017-2027 Hybrid & Pure Electric Technology Roadmap, Market Forecasts, Companies, Models, MEA
Web Address: http://www.researchandmarkets.com/reports/4173006/
Office Code: SCWP719H

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5075</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td></td>
<td>USD 5380 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7615</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td></td>
<td>USD 7920 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ______________________________ Last Name: ______________________________
Email Address: * ______________________________
Job Title: ______________________________
Organisation: ______________________________
Address: ______________________________
City: ______________________________
Postal / Zip Code: ______________________________
Country: ______________________________
Phone Number: ______________________________
Fax Number: ______________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

- ☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

- ☐ Pay by check: Please post the check, accompanied by this form, to:

 Research and Markets,
 Guinness Center,
 Taylors Lane,
 Dublin 8,
 Ireland.

- ☐ Pay by wire transfer: Please transfer funds to:

 Account number: 833 130 83
 Sort code: 98-53-30
 Swift code: ULSBIE2D
 IBAN number: IE78ULSB98533083313083
 Bank Address: Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World